Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Abstract

In South-east Norway, several scattered observations of reduced growth and dieback symptoms were observed over the last 20 years in 40-60 years old Norway spruce (Picea abies) trees. Typical symptoms start with yellowing in the top and subsequent dieback downwards from the top. These symptoms are often combined with bark beetle (Ips typographus), honey fungus (Armillaria spp.) infections, and a sudden decrease in diameter and height growth. After about 1-5 years, most of the symptomatic trees are dead.We selected 11 representative stands in six counties. In each stand all trees in ten 250 m2 plots were evaluated, in total about 4000 trees. In each of these 110 plots, one symptomatic and one non-symptomatic tree were investigated in more detail. We measured tree diameter, height, took increment cores and assessed crown condition, wounds, resin flow, stem cracks, bark beetle infection and Armillaria presence. In addition, internode lengths of the last 20 years were measured in two of the stands.Preliminary results of internode lengths and increment cores showed a sudden decrease of height and diameter growth in the symptomatic trees. Many of these trees had a secondary infection of bark beetles and Armillaria. Some years appear to be typical problem years for many of the trees. These years also correspond with summer drought, i.e. negative Palmer drought severity indexes which were estimated for each stand. In comparison, the non-symptomatic trees, growing close to the symptomatic ones, showed none or minor growth reductions and discolouration.Climate change and increased summer drought may worsen spruce dieback problems. Management adaptions are uncertain. We conclude that Norway spruce is sensitive to drought, which reduce the growth and weaken the health, and probably reduce the defence against secondary infections.

Abstract

K-nearest neighbor (kNN) approaches are popular statistical methods for predicting forest attributes in airborne laser scanning (ALS) based inventories. Their main upsides are the simplicity to predict multivariate response variables and their freeness of distributional assumptions on the conditional response.One of their largest draw-backs is that predictions outside the range of the reference data inherently result in an under- or overestimation. This property of kNN approaches is known as extrapolation bias and aggravates with an increasing number of neighbors (k) used for the prediction.This study presents one possibility to reduce extrapolation biases of predictions based on the area-based approach (ABA) by using individual tree crown (ITC) approaches within those specific areas of a low density ALS acquisition where the point density might be sufficiently high for using ITC methods.In the proposed strategy, additional (or artificial) reference plots augmented field measured plots. Artificial plots were created by applying ITC segmentation to a canopy height model derived from high density ALS data. The response variable biomass per hectare was predicted for every segment following a semi-ITC approach.The segment predictions were aggregated on the artificial plot level. The artificial plots were then treated in the same way as the original reference data to make predictions in areas with low density ALS data based on the ABA. It was hereby assumed that the predicted plot level response on the artificial plots is equivalent with the observed plot level response on the original reference data.The data consisted of 110 reference plots with a smaller data range than the 201 independent validation plots. Considerable extrapolation bias was visible if only the reference plots were used for the prediction. Almost no extrapolation bias was found if the prediction was based on reference plots augmented by artificial plots. The root mean squared error (RMSE) of the biomass predictions based on the reference plots was 39.1%. The RMSE reduced to 29.8% if the reference plots were augmented by artificial plots.

To document

Abstract

This study investigates the relationship between Leaf Area Index (LAI) reduction in pine stands caused by pine sawfly (Neodiprion sertifier) larva and reflectance change measured using multitemporal optical satellite data. The study was carried out in 552 Scots Pine (Pinus sylvestris)-dominated stands in southern Norway (60° 41′ N, 12° 18′ E). Post-damage Satellite Pour l'Observation de la Terre (SPOT) satellite data were calibrated to surface reflectance using reflectance products of the moderate-resolution imaging spectroradiometer (MODIS). Standwise reflectance change was then computed by subtracting a pre-damage SPOT image that had been relative calibrated to the post-damage image using histogram matching. The reflectance changes were related to changes in LAI obtained from multitemporal lidar data calibrated with field measurements made with a LiCOR LAI-2000 plant canopy analyser. The reduced needle biomass growth due to the insect damage caused an increase in reflectance on the order of 0.002–0.015 in the visible and short-wave infrared SPOT bands and a decrease of 0.01 in the near infrared (NIR) band compared with a large reference data set with normally developed stands. A cross-validated discriminant analysis showed that 79% of the damaged stands could be separated from the undamaged stands by using the SPOT data.