Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Til dokument

Sammendrag

This study presents the first attempt in Sri Lanka to generate a forest fire risk map covering the entire country using a GIS-based forest fire index (FFI) model. The model utilized seven parameters: land use, temperature, slope, proximity to roads and settlements, elevation, and aspect. All these parameters were derived using GIS techniques with ArcGIS10.4 and QGIS3.16. Data from Remote Sensing sources, particularly the MODIS hotspot real-world dataset, were employed to gather fire count information for the year 2020. Validation was conducted through the merging hotspot technique and kernel density estimation (KDE). The research findings highlight the districts in the Central and Uva provinces, such as NuwaraEliya (10.3 km2), Kandy (2.74 km2), and Badulla (10.41 km2), as having a “very low risk" of forest fire potential. Conversely, districts like Hambanthota (0.1 km2), Kaluthara (0.04 km2), and Kurunegala (0.2 km2) exhibit a “very high risk" of forest fire potential, although it is negligible compared country's total area. Overall, the study suggests that Sri Lanka is not currently facing a significant threat of forest fires and is a “medium risk" of forest fires as 49.49% of land falls under this category. These results are of immense value to relevant authorities, including the Ministry of Wildlife and Forest Resources Conservation, in formulating effective strategies to manage and mitigate forest fire risks in the country.

Til dokument

Sammendrag

Soybean pod count is a crucial aspect of soybean plant phenotyping, offering valuable reference information for breeding and planting management. Traditional manual counting methods are not only costly but also prone to errors. Existing detection-based soybean pod counting methods face challenges due to the crowded and uneven distribution of soybean pods on the plants. To tackle this issue, we propose a Soybean Pod Counting Network (SPCN) for accurate soybean pod counting. SPCN is a density map-based architecture based on Hybrid Dilated Convolution (HDC) strategy and attention mechanism for feature extraction, using the Unbalanced Optimal Transport (UOT) loss function for supervising density map generation. Additionally, we introduce a new diverse dataset, BeanCount-1500, comprising of 24,684 images of 316 soybean varieties with various backgrounds and lighting conditions. Extensive experiments on BeanCount-1500 demonstrate the advantages of SPCN in soybean pod counting with an Mean Absolute Error(MAE) and an Mean Squared Error(MSE) of 4.37 and 6.45, respectively, significantly outperforming the current competing method by a substantial margin. Its excellent performance on the Renshou2021 dataset further confirms its outstanding generalization potential. Overall, the proposed method can provide technical support for intelligent breeding and planting management of soybean, promoting the digital and precise management of agriculture in general.

Til dokument

Sammendrag

Six seed mixtures differing in number of species and their proportion of timothy (Phleum pratense L.) were tested during three/four production (ley) years in replicated field experiments at three climatically different sites in Norway; one a mountainous inland site at 61° N (Løken) and two in coastal environments, at 61° N (Fureneset) and 65° N (Tjøtta). There were significant differences in forage accumulation (FA) and digestible forage accumulation (DFA) between the three sites. There was a significant FA decline from the third to the fourth ley year for mixtures containing timothy, but not for mixtures without timothy. Estimated interannual FA- stability was higher for timothy-based seed mixtures than for mixtures without timothy at the inland site, but FA-stability was lower at the coastal sites. In the third-year herbage of timothy-based mixtures at the inland site consisted almost solely of timothy, whereas at the coastal sites meadow fescue (Festuca pratensis Huds.) and especially tall fescue (F. arundinacea Schreb.) dominated. In seed mixtures without timothy, cocksfoot (Dactylis glomerata L.) suppressed other species at the inland site, whereas at the coastal sites, tall fescue and ryegrasses (Lolium spp.) were the dominant species in the third-year herbage. Length of growing season and site-specific growing conditions were important drivers for the observed species changes. Timothy can thus be recommended for ley establishment at sites where the growing season is short (<4 months) and plant growth is intensive, but under conditions with a longer growing season it needs to be sown in mixtures with grass species that surpass the regrowth capacity of timothy.

Sammendrag

Climate change with fluctuations in weather patterns, environmental concerns, and increased costs of mineral fertilizers all demand adjustment of nitrogen (N) used for forage production. The aim of the study was to investigate the effects of splitting N application in spring on dry-matter (DM) yield, crude protein (CP) content and protein quality of timothy-meadow fescue leys. The trial was conducted during two years at three locations (Kvithamar and Særheim, Norway and Länghem, Sweden). Split N application with 60 kg N ha–1 at onset of grass growth in April and 50 kg N ha–1 in May resulted in the same DM yields and CP concentrations as a single application of 110 kg N ha–1 in April in Kvithamar the first year and Særheim both years. In Länghem both years and for Kvithamar in the second year, a late application two weeks before first cut gave less DM yield than the single full application in April. Split application did not affect the contents of nonprotein N or nitrate.

Til dokument

Sammendrag

Orchardgrass (Dactylis glomerata L.) is an important forage seed crop, but unlike other cool-season grasses, seed yields have not increased over time. Seed yield increases in orchardgrass may be possible with plant growth regulators (PGRs) such as trinexapac-ethyl (TE) and chlormequat chloride (CCC). Field trials were conducted at Hyslop Experimental Farm near Corvallis, Oregon, over three crop years (2017–2019) to examine the effects of spring nitrogen (N) and PGRs on seed production characteristics in orchardgrass. Spring N treatments included 0, 112, 157, and 202 kg N ha−1 and PGR applications were timed using the BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie) scale. Four PGR treatments included an untreated control, 210 g TE ha−1 at BBCH 32, 210 g TE ha−1 at BBCH 51, and 105 g TE ha−1 + 1500 g CCC ha−1 at BBCH 32. An interaction of spring N and PGR increased seed yields in 2 years, while spring N and PGR increased seed yield independently in the other year. The combination of TE and CCC PGRs did not increase seed yield over TE alone. Seed yield increases from spring N were due to an increase in seed number m−2, while increases in seed yield attributable to PGRs were the result of increased seed number m−2 and harvest index. This study suggests that the combination of 112 kg ha−1 spring N and 210 g ha−1 TE PGR is the best practice to maximize seed yield in orchardgrass.

Sammendrag

The OPTAIN case study teams met with stakeholder Multi-Actor Reference Groups (MARGs) for the third time to jointly discuss preliminary modelling results for specific Natural/Small Water Retention Measures (NSWRM) and obtain feedback. https://www.optain.eu/news/stakeholder-multi-actor-reference-groups-margs-met-3rd-time-jointly-discuss-preliminary