Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

Background: A functional forest carbon measuring, reporting and verification (MRV) system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emissions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1) developed linear mixed effects models for total living biomass (TLB) estimation as a function of spectral variables, (2) developed a 30 m resolution map of the total living carbon (TLC), and (3) estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700 km2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area. Results: We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI) is equal to 44 t/ha (49 % of the mean value). The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % confidence interval of 74–88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47 % of TLB. Conclusion: The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem suggested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands.

To document

Abstract

We demonstrate the efficacy of using close-range photogrammetry from a consumer grade camera as a tool in generating high-resolution, three-dimensional coloured point clouds for detailed analysis or monitoring of wheel ruts. Ground-based timber harvesting results in vehicle traffic on 12–70 per cent of the site, depending on the system used, with a variable probability of causing detrimental soil disturbance depending on climatic, hydrological and soil conditions at the time of harvest. Applying the technique described in this article can reduce the workload associated with the conventional manual measurement of wheel ruts, while providing a greatly enhanced source of information that can be used in analysing both physical and biological impact, or stored in a repository for later operation management or monitoring. Approaches for deriving and quantifying properties such as rut depths and soil displacement volumes are also presented. In evaluating the potential for widespread adoption of the method among forest or environmental managers, the study also presents the workflow and provides a comparison of the ease of use and quality of the results obtained from one commercial and two open source image processing software packages. Results from a case study showed no significant difference between packages on point cloud quality in terms of model distortion. Comparison of photogrammetric profiles against profiles measured manually resulted in root mean square errors of between 2.07 and 3.84 cm for five selected road profiles. Maximal wheel rut depth for three different models were 1.15, 0.99 and 1.01 m, and estimated rut volumes were 9.84, 9.10 and 9.09 m3, respectively, for 22.5 m long sections.