Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Jiska Joanneke van Dijk Graciela Rusch Hilde Karine Wam Paul Eric Aspholm Even Bergseng Vegard GundersenAbstract
No abstract has been registered
Authors
Torbjørn Ekrem Roberto Guidetti K. Ingemar Jönsson Łukasz Kaczmarek Terje Meier Elisabeth Stur Tommy Prestø Kristian Hassel Karstein Hårsaker Lasse Topstad Ivar GjerdeAbstract
Background: The knowledge of Norwegian tardigrades is poor and their diversity, distribution and ecology in Norwegian forests is unknown. This project aims to investigate tardigrade diversity associated with different types of substrates in forests in Norway, evaluate the impact of forestry management practices on tardigrade biodiversity for future conservation policies, and expand the DNA barcode library of Norwegian tardigrades. It will also use environmental barcoding of substrates to test the effectiveness of this method in documenting tardigrade diversity and distribution. Results: We collected three hundred bryophyte-, lichen- and leaf litter samples from various protected deciduous and coniferous forests in Norway in 2017. The vegetation in each sample was identified, mostly to species-level. Tardigrades were extracted from most bryophyte- and lichen samples, and some litter samples. Preliminary analyses show that there are differences in abundance and community composition between both forest- and substrate types. Litter samples show lower abundances than bryophyte and lichen samples, but a higher diversity than expected. Conclusions: Remaining samples still need to be processed, but our preliminary conclusion is that different substrates and forest types host different tardigrade communities. DNA-barcoding will be performed on single specimens of as many of the sampled species as possible and added to the Barcode of Life Data Systems database (BOLD). We expect that DNA metabarcoding of environmental samples from selected localities will record the same diversity as traditional extraction of specimens, but also add information on the presence of species that were undetected.
Authors
Anna Avetisyan Anush Panosyan Martina Paponov Ivan Paponov Inger Martinussen Kirsten Krause Zara Harutyunyan Irina Vardanian Andreas Melikyan Manvel Badalyan Tatevik Aloyan Alla Vardanyan Samvel Shoukourian Laura JaakolaAbstract
No abstract has been registered
Authors
Ramón Fernando Colmenares-Quintero Luis-Fernando Latorre-Noguera Juan-Carlos Colmenares-Quintero Janka DibdiakovaAbstract
The study carried out here aims to determine the advantage of using in-situ electricity generation facilities versus conventional generators, being evaluated from the environmental point of view. For this, an environmental analysis on the production of CO2 has been applied to two scenarios of electricity generation for a residential building in Medellin city (Colombia). The first one refers to La Sierra thermo-electric plant located in La Sierra, municipality of Puerto Nare, in the Antioquiashire, which is the most efficient plant in Colombian thermal generation. The second comparison scenario refers to the annual operation of a micro-cogeneration facility, which satisfies the building's hot water and electrical energy needs. Using the capabilities of the TRNSYS v17® energy simulation software and the emission equations available in the public domain, the comparative environmental analysis is carried out between one and the other for the same load. The losses in electric transmission are assumed to be 10%. This analysis has shown a difference of more than 50% in emissions generation, with the main cause being the amount of fuel used, which for both cases is natural gas. On the other hand, this study shows the environmental advantages in the use of in-situ generators, decreasing transmission losses.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Holger LangeAbstract
No abstract has been registered
Authors
Juraj Galko Bjørn Økland Troy Kimoto Slavomír Rell Milan Zúbrik Andrej Kunca Jozef Vakula Andrej Gubka Christo NikolovAbstract
A warmer climate may potentially have a strong effect on the health status of European oak forests by weakening oak trees and facilitating mass reproduction of wood boring insects. We did a laboratory experiment in Slovakia to study the response of major pest beetles of oak and their parasitoids to different temperature regimes as background for predicting climatic effects and improving management tools of European oak forests. With higher temperatures the most important oak pest Scolytus intricatus emerged much earlier, which indicate that completion of a second generation and increased damage further north in European oak forests may be possible. Lower temperatures gave longer larval galleries and more offspring per parents but still lower beetle production due to semivoltine life cycle. For buprestids and longhorn beetles warmer temperatures resulted in more emerging offspring and a shift towards earlier emergence in the same season, but no emergence in the first season indicated that a change to univoltine populations is not likely. Reduced development success of parasitoids at the highest temperatures (25/30 °C) indicates a loss of population regulation for pest beetle populations. A warmer climate may lead to invasion of other population-regulating parasitoids, but also new serious pest may invade. With expected temperature increases it is recommended to use trap trees both in April and in June, and trap trees should be removed within 2 months instead 1 year as described in the current standard.
Abstract
No abstract has been registered
Authors
Arne StensvandAbstract
No abstract has been registered