Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

In Scandinavia, the bird cherry-oat aphid Rhopalosiphum padi overwinter as eggs on the bird cherry tree Prunus padus. Branches of P. padus were collected at the late February / early March from 17 locations in Norway over a three-year period. We found 3599 overwintering aphid eggs, 59.5% of which were dead. Further, a total of 879 overwintering fungus-killed cadavers were observed. These cadavers were found close to bud axils, where overwintering eggs were also usually attached. Cadavers were infected with either Zoophthora cf. aphidis or Entomophthora planchoniana. All the fungal-killed cadavers were filled with overwintering structures of Z. cf. aphidis (as resting spores) or E. planchoniana (as modified hyphal bodies). We found a significant negative correlation between eggs and cadavers per branch. However, both numbers of eggs and cadavers varied greatly between years and among tree locations. This is the first report of E. planchoniana overwintering in R. padi cadavers as modified hyphal bodies. We discuss whether P. padus may act as an inoculum reservoir for fungi infecting aphids in cereals in spring.

To document

Abstract

The introduction of cover crops into monoculture systems to improve soil health has been widely adopted worldwide. However, little is known about the environmental risks and application prospects of different cover crops in spring maize (Zea mays L.) monocultures proposed in the North China Plain. A pot experiment was conducted to evaluate the effects of different winter cover crops on subsequent maize yield, soil fertility, and environmental risks of nitrogen (N) loss, and a questionnaire survey was conducted to examine factors influencing farmers' willingness to adopt cover crops in the North China Plain. Based on the same fertilization regime during the maize growing period, four winter cover crop treatments were set up, including bare fallow, hairy vetch (Vicia villosa Roth.), February orchid (Orychophragmus violaceus), and winter oilseed rape (Brassica campestris L.). The results indicated that winter cover crops significantly increased subsequent maize yield and soil organic carbon, total N, and microbial biomass carbon and N compared with the bare fallow treatment. The incorporation of cover crops led to a negligible increase in nitrous oxide (N2O) emissions and had a very limited effect on ammonia (NH3) emissions. The incorporation of February orchid and winter oilseed rape decreased nitrate leaching compared with the hairy vetch treatment in the maize growing season. The N losses via N2O and NH3 emissions and N leaching accounted for 71%–84% of the N surplus. However, yield increase and environmental benefits were not the main positive factors for farmers to accept cover crops. Financial incentive was rated by 83.9% of farmers as an “extremely important” factor, followed by other costs, when considering winter cover cropping. These results indicate that the environmental benefits depend on the type of cover crop. Maintaining high levels of soil fertility and maize yield, providing sufficient subsidies, and encouraging large-area cultivation of cover crops are critical measures to promote winter cover cropping in the North China Plain.

To document

Abstract

Through their ephemeral reproductive structures (fruiting bodies), ectomycorrhizal forest soil fungi provide a resource for a plethora of organisms. Thus, resolving what biotic and abiotic factors determine the occurrence and abundance of fruiting bodies is fundamental for understanding the dynamics of forest trophic networks. While the influence of abiotic factors such as moisture and temperature on fungal fruiting are relatively well established, little is known about how these processes interact with the evolutionary history of fungal species to determine when, where, and in which abundance fungal fruiting bodies will emerge. A specific knowledge gap relates to whether species' responses to their environment are phylogenetically structured. Here, we ask whether related fungal taxa respond similarly to climatic factors and forest habitat characteristics, and whether such correlated responses will affect the assembly of fungal fruiting communities. To resolve these questions, we fitted joint species distribution models combining data on the species composition and abundance of fungal fruiting bodies, environmental variation, and phylogenetic relationships among fungal taxa. Our results show that both site-level forest characteristics (dominant tree species and forest age) and climatic factors related to phenology (effective heat sum) greatly influence the occurrence and abundance of fruiting bodies. More importantly, while different fungal species responded unequally to their shared environment, there was a strong phylogenetic signal in their responses, so that related fungal species tended to fruit under similar environmental conditions. Thus, not only are fruiting bodies short-lived and patchily distributed, but the availability of similar resources will be further aggregated in time and space. These strong constraints on resource availability for fungus-associated taxa highlight the potential of fungus-based networks as a model system for studies on the ecology and evolution of resource–consumer relations in ephemeral systems of high spatiotemporal patchiness.

To document

Abstract

An epigenetic memory of the temperature sum experienced during embryogenesis is part of the climatic adaptation strategy of the long-lived gymnosperm Norway spruce. This memory has a lasting effect on the timing of bud phenology and frost tolerance in the resulting epitype trees. The epigenetic memory is well characterized phenotypically and at the transcriptome level, but to what extent DNA methylation changes are involved have not previously been determined. To address this, we analyzed somatic epitype embryos of Norway spruce clones produced at contrasting epitype-inducing conditions (18 and 28°C). We screened for differential DNA methylation in 2744 genes related mainly to the epigenetic machinery, circadian clock, and phenology. Of these genes, 68% displayed differential DNA methylation patterns between contrasting epitype embryos in at least one methylation context (CpG, CHG, CHH). Several genes related to the epigenetic machinery (e.g., DNA methyltransferases, ARGONAUTE) and the control of bud phenology (FTL genes) were differentially methylated. This indicates that the epitype-inducing temperature conditions induce an epigenetic memory involving specific DNA methylation changes in Norway spruce.

To document

Abstract

The management of infectious wildlife diseases often involves tackling pathogens that infect multiple host species. Chronic wasting disease (CWD) is aprion disease that can infect most cervid species. CWD was detected in reindeer (Rangifer tarandus) in Norway in 2016. Sympatric populations of red deer(Cervus elaphus) and moose (Alces alces) are at immediate risk. However, the estimation of spillover risk across species and implementation of multispecies management policies are rarely addressed for wildlife. Here, we estimated the broad risk of CWD spillover from reindeer to red deer and moose by quantifying the probability of co-occurrence based on both (1) population density and(2) habitat niche overlap from GPS data of all three species in Nordfjella,Norway. We describe the practical challenges faced when aiming to reduce the risk of spillover through a marked reduction in the population densities of moose and red deer using recreational hunters. This involves setting the popu-lation and harvest aims with uncertain information and how to achieve them.The niche overlap between reindeer and both moose and red deer was low overall but occurred seasonally. Migratory red deer had a moderate niche over-lap with the CWD-infected reindeer population during the calving period, whereas moose had a moderate niche overlap during both calving and winter. Incorporating both habitat overlap and the population densities of the respective species into the quantification of co-occurrence allowed for more spatially targeted risk maps. An initial aim of a 50% reduction in abundance for the Nordfjella region was set, but only a moderate population decrease of less than 20% from 2016 to 2021 was achieved. Proactive management in the form of marked population reduction is invasive and unpopular when involving species of high societal value, and targeting efforts to zones with a high risk ofspillover to limit adverse impacts and achieve wider societal acceptance is important. disease management, host range, moose, multihost pathogens, niche overlap, Norway,population estimation, red deer, reindeer

To document

Abstract

Northern forest ecosystems make up an important part of the global carbon cycle. Hence, monitoring local-scale gross primary production (GPP) of Northern forest is essential for understanding climatic change impacts on terrestrial carbon sequestration and for assessing and planning management practices. Here we evaluate and compare four methods for estimating GPP using Sentinel-2 data in order to improve current available GPP estimates: four empirical regression models based on either the 2-band Enhanced Vegetation Index (EVI2) or the plant phenology index (PPI), an asymptotic light response function (LRF) model, and a light-use efficiency (LUE) model using the MOD1732 algorithm. These approaches were based on remote sensing vegetation indices, air temperature (Tair), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR). The models were parametrized and evaluated using in-situ data from eleven forest sites in North Europe, covering two common forest types, evergreen needleleaf forest and deciduous broadleaf forest. Most of the models gave good agreement with eddy covariance-derived GPP. The VI-based regression models performed well in evergreen needleleaf forest (R2 = 0.69–0.78, RMSE = 1.97–2.28 g C m−2 d−1, and NRMSE =9-11.0%, eight sites), whereas the LRF and MOD17 performed slightly worse (R2 = 0.65 and 0.57, RMSE = 2.49 and 2.72 g C m−2 d−1, NRMSE = 12 and 13.0%, respectively). In deciduous broadleaf forest all models, except the LRF, showed close agreements with the observed GPP (R2 = 0.75–0.80, RMSE = 2.23–2.46 g C m−2 d−1, NRMSE = 11–12%, three sites). For the LRF model, R2 = 0.57, RMSE = 3.21 g C m−2 d−1, NRMSE = 16%. The results highlighted the necessity of improved models in evergreen needleleaf forest where the LUE approach gave poorer results., The simplest regression model using only PPI performed well beside more complex models, suggesting PPI to be a process indicator directly linked with GPP. All models were able to capture the seasonal dynamics of GPP well, but underestimation of the growing season peaks were a common issue. The LRF was the only model tending to overestimate GPP. Estimation of interannual variability in cumulative GPP was less accurate than the single-year models and will need further development. In general, all models performed well on local scale and demonstrated their feasibility for upscaling GPP in northern forest ecosystems using Sentinel-2 data.