Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), has now become a pest of global concern. Originally known to be endemic to the Western Hemisphere, its first detection in Africa was followed by spectacular outbreaks and spread to almost all sub-Saharan countries. The rapid incursion of S. frugiperda on maize (Zea mays L.; Poaceae) fields in Africa highlighted a crucial need for a comprehensive assessment of integrated pest management strategies in most smallholder farms. However, these strategies cannot successfully function without efficient monitoring and surveillance efforts. These trapping studies were designed to provide an indication as to whether pheromone trap-lure combinations and simple changes in landscape and agricultural practices might mitigate fall armyworm infestations. Our data show that the commercially available Unitrap was the most effective design for fall armyworm captures among the traps tested. The inexpensive home-made 2 L jar trap was capable of consistently collecting fall armyworm during the first season of relatively moderate fall armyworm density. However, the number of fall armyworm captured by home-made trap were several fold lower than by the Unitrap under all conditions, and almost no fall armyworm was captured during the second season by home-made 2 L jar when fall armyworm density was low. Substantial differences were observed among the pheromone blends with respect to numbers of fall armyworm and non-targets captured. The 4-component blend attracted the most fall armyworm under all conditions. The 2-component blend was the most selective, with no non-target species found during the second season experiments.

To document

Abstract

Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long-term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5–10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).

To document

Abstract

Due to the diversity of microbiota and the high complexity of their interactions that mediate biogas production, a detailed understanding of the microbiota is essential for the overall stability and performance of the anaerobic digestion (AD) process. This study evaluated the microbial taxonomy, metabolism, function, and genetic differences in 14 full-scale biogas reactors and laboratory reactors operating under various conditions in China. This is the first known study of the microbial ecology of AD at food waste (FW) at a regional scale based on multi-omics (16S rRNA gene amplicon sequencing, metagenomics, and proteomics). Temperature significantly affected the bacterial and archaeal community structure (R2 = 0.996, P = 0.001; R2 = 0.846, P < 0.002) and total inorganic carbon(TIC) slightly changed the microbial structure (R2 = 0.532, P = 0.005; R2 = 0.349, P = 0.016). The Wood-Ljungdahl coupled with hydrogenotrophic methanogenic pathways were dominant in the thermophilic reactors, where the acs, metF, cooA, mer, mch and ftr genes were 10.1-, 2.8-, 16.2-, 1.74-, 4.15-, 1.04-folds of the mesophilic reactors (P < 0.01). However, acetoclastic and methylotrophic methanogenesis was the primary pathway in the mesophilic reactors, where the ackA, pta, cdh and mta genes were 2.2-, 3.2-, 14.3-, 1.88-folds of the thermophilic group (P < 0.01). Finally, the Wilcoxon rank-sum test was applied to explain the cause of the temperature affecting AD microbial activities. The findings have deepened the understanding of the effect of temperature on AD microbial ecosystems and are expected to guide the construction and management of full-scale FW biogas plants.

Abstract

We used metabarcoding of ITS 1 and 2 to compare the mycobiome of Norwegian spring wheat seed lots of two commonly grown spring wheat varieties (Mirakel and Zebra) harvested in 2016 and 2017. The seed lots varied in germination and were grouped according to high and low germination (≥90% and <90% germinated seeds, respectively) determined by the ISTA germination method. In addition, the percentage of each seed lot infested by the most important wheat pathogens (Microdochium spp., Fusarium spp., and Parastagonospora nodorum) was determined using a plate-out test on PDA, and species-specific qPCR was used to quantify the amount of DNA of F. avenaceum, F. culmorum, F. graminearum, F. poae, M. majus, M. nivale, and P. nodorum. Our study indicated that the presence of Microdochium was most associated with poor germination (which is as expected), while P. nodorum; although present at relatively high levels, apparently had limited impact on germination. Among the species quantified by qPCR, M. majus was the most abundant, F. avenaceum was detected at low levels, whereas the other fusaria were barely detected. Metabarcoding data indicated a negative association between the presence of the fungal genus Neoascochyta and germination, while Pyrenophora and Alternaria species appeared positively associated with germination. Our results indicated some co-existence patterns between fungal species, including both pathogenic and non-pathogenic species, with some species combinations associated with the germination potential of wheat seed.