Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

The Formicoxenus genus-group comprises six genera within the tribe Crematogastrini. The group is well known for repeated evolution of social parasitism among closely related taxa and cold-adapted species with large distribution ranges in the Nearctic and Palearctic regions. Previous analyses based on nuclear markers (ultraconserved elements, UCEs) and mitochondrial genes suggest close relationship between Formicoxenus Mayr, 1855, Leptothorax Mayr, 1855 and Harpagoxenus Forel, 1893. However, scant sampling has limited phylogenetic assessment of these genera. Also, previous phylogeographic analyses of L. acervorum (Fabricius, 1793) have been limited to its West-Palearctic range of distribution, which has provided a narrow view on recolonization, population structure and existing refugia of the species. Here, we inferred the phylogenenetic history of genera within the Formicoxenus genus-group and reconstructed the phylogeography of L. acervorum with more extensive sampling. We employed three datasets, one data set consisting of whole mitochondrial genomes, and two data sets of sequences of the COI-5P (658 bp) with different number of specimens. The topologies of previous nuclear and our inferences based on mitochondrial genomes were overall congruent. Further, Formicoxenus may not be monophyletic. We found several monophyletic lineages that do not correspond to the current species described within Leptothorax, especially in the Nearctic region. We identified a monophyletic L. acervorum lineage that comprises both Nearctic and Palearctic locations. The most recent expansion within L. acervorum probably occurred within the last 0.5 Ma with isolated populations predating the Last Glacial Maximum (LGM), which are localized in at least two refugial areas (Pyrenean and Northern plateau) in the Iberian Peninsula. The patterns recovered suggest a shared glacial refugium in the Iberian Peninsula with cold-adapted trees that currently share high-altitude environments in this region.

To document

Abstract

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.

To document

Abstract

Recent decades have seen increased temperatures and precipitation in the Nordic countries with long-term projections for reduced frost duration and depth. The consequence of these trends has been a gradual shift of delivery volumes to the frost-free season, requiring more agile management to exploit suitable weather conditions. Bearing capacity and trafficability are dependent on soil moisture state and in this context two satellite missions offer potenially useful information on soil moisture levels; NASA’s SMAP (Soil Moisture Active Passive) and ESA’s Sentinel-1. The goal of this pilot study was to quantify the performance of such satellite-based soil moisture variables for modeling forest road bearing capacity (e-module) during the frost-free season. The study was based on post-transport registrations of 103 forest road segments on the coastal and interior side of the Scandinavian mountain range. The analysis focused on roads of three types of surface deposits. Weekly SMAP soil moisture values better explained the variation in road e-module than soil water index (SWI) derived from Sentinel-1. Soil Water Index (SWI), however, reflected the weather conditions typical for operations on the respective surface deposit types. Regression analysis using (i) SMAP-based soil dryness index and (ii) its interaction with surface deposit types, together with (iii) the ratio between a combined SMAP_SWI dryness index and segment-specific depth to water (DTW) explained over 70% of the variation in road e-module. The results indicate a future potential to monitor road trafficability over large supply areas on a weekly level, given further refinement of study methods and variables for improved prediction.

To document

Abstract

This paper explores the utilisation of gauge rainfall and satellite-based precipitation product (SPP)-TRMM3B42, to develop IDF curves for the Fiji Islands. The study compares the application of remote sensing data against rain gauge (RG) data for two main stations, Nadi and Nausori (1991 to 2020). The accuracy of SPPs is evaluated through statistical analysis, employing continuous and categorical evaluation indices. The results indicate that TRMM3B42 tends to overestimate light precipitation and underestimate heavy rainfall in low elevations when compared to rain gauge data. Rainfall intensities derived from satellite data exhibit relative changes within ± 10%. This study also performs future projections. Two greenhouse emission scenarios, Shared Socioeconomic Pathways (SSP) 2–4.5 and 5–8.5, are employed for IDF curve projection. The analysis reveals that changes in IDF curves are more pronounced for short-duration rainfall as compared to high-duration rainfall. Additionally, higher emission scenarios demonstrate greater changes compared to lower scenarios. These findings emphasise the importance of accounting for climate change and future projections in designing urban infrastructure, particularly considering potential urban expansion and human settlements. This study helps in solving design problems associated with urban runoff control and disposal where knowing the rainfall intensities of different return periods with different durations is vital.

To document

Abstract

In this study, we leverage geographical coordinates and firm-level panel data to uncover variations in production across different locations. Our approach involves using a semiparametric proxy variable regression estimator, which allows us to define and estimate a customized production function for each firm and its corresponding location. By employing kernel methods, we estimate the nonparametric functions that determine the model’s parameters based on latitude and longitude. Furthermore, our model incorporates productivity components that consider various factors that influence production. Unlike spatially autoregressive-type production functions that assume a uniform technology across all locations, our approach estimates technology and productivity at both the firm and location levels, taking into account their specific characteristics. To handle endogenous regressors, we incorporate a proxy variable identification technique, distinguishing our method from geographically weighted semiparametric regressions. To investigate the heterogeneity in production technology and productivity among Norwegian grain farmers, we apply our model to a sample of farms using panel data spanning from 2001 to 2020. Through this analysis, we provide empirical evidence of regional variations in both technology and productivity among Norwegian grain farmers. Finally, we discuss the suitability of our approach for addressing the heterogeneity in this industry.

Abstract

Wood modification using polyesterification of sorbitol and citric acid is a novel environmentally friendly strategy for wood protection improving its dimensional stability and acts against fungal deterioration. Inelastic Raman scattering is sensitive to the molecules of high polarizability and both lignocellulose and aliphatic esters formed during the treatment are polar. Therefore, in the present study, the quality control of the treatment using a handheld Raman spectrometer equipped with 830 nm laser is suggested as a rapid and reliable approach. Raman spectra from six wood modification levels (resulting in different weight percent gain, WPG) of three different wood species (Silver birch, Scots pine and Norway spruce) as well as three sample preparation strategies (intact, sanded and milled wood samples) were collected, and further analyzed using a chemometric method. Best performing models based on Powered Partial Least Squares Regression predicted the WPG level at R2 = 0.85, 0.95 and 0.98 for birch, pine and spruce, respectively. In addition, a clear separation between hard and soft wood species was also captured. Especially for softwood species, the sample preparation method affected the model accuracy, revealing the best performance in milled material. It is concluded that by using handheld Raman spectrometer it is possible to perform accurate quality control of wood modified by polyesterification of citric acid and sorbitol.