Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Abstract
More than 2/3rds of Norway’s agricultural area are grassland, and more than half of it is over 5 years old. Renewing old grassland increases annual yield but causes yield loss during renewal. Parts of the increased yield is due to replacement of low-productive species with high production species and cultivars, replacing biodiversity with productivity. Finding the optimal rate of renewal requires long term experiments to compare the sustainability of different strategies. Therefore, three field experiments were established to investigate the effect of difference renewal and harvest strategies on grass yield and quality, on similar mineral soil at Særheim (58.5°N, 5.6°E) in 1968 and Fureneset (61.3°N,5.0°E) in 1974, and on peat soil at Svanhovd (69.5°N,30.0°E) in 1968. Until 1991, the experiment included non-renewed treatments, and renewal every 3rd or 6th year. It was cut either two or three times a year, with autumn grazing on parts of the two-cut regime. The experiment was simplified in 1992, with the establishment of another non-renewed treatment, all treatments being cut 3 times a year (2 at Svanhovd), no grazing but contrasting slurry and compound fertilizer applications. This phase lasted until 2011, followed by period with no renewal and minimal registration. The third phase started in 2016, with renewal of all treatments at Fureneset and Særheim, except the permanent grassland from 1968/1974. Duration between renewals was doubled, and fertilizer applications revised. Presenting results from the third phase, we show that five to six years are required to recoup and significantly over-yield the non-renewed grassland. We will use soil chemical and physical properties, fertilizer application and yield gaps as well as ecological succession from sown seed mixture in 2017 till 2022 grassland to discuss the why we needed six years for all renewed treatments to over-yield permanent grassland from 1974.
Authors
Ingunn M. VågenAbstract
No abstract has been registered
Authors
Christina SoggeAbstract
No abstract has been registered
Authors
M.L. Robinson P.G. Hahn B.D. Inouye N. Underwood S.R. Whitehead K.C. Abbott E.M. Bruna N.I. Cacho L.A. Dyer L. Abdala-Roberts W.J. Allen J.F. Andrade D.F. Angulo D. Anjos D.N. Anstett R. Bagchi S. Bagchi M. Barbosa S. Barrett C.A. Baskett E. Ben-Simchon K.J. Bloodworth J.L. Bronstein Y.M. Buckley K.T. Burghardt C. Bustos-Segura E.S. Calixto R.L. Carvalho B. Castagneyrol M.C. Chiuffo D. Cinoğlu E. Cinto Mejía M.C. Cock R. Cogni O.L. Cope T. Cornelissen D.R. Cortez D.W. Crowder C. Dallstream W. Dáttilo J.K. Davis R.D. Dimarco H.E. Dole I.N. Egbon M. Eisenring A. Ejomah B.D. Elderd Joshua Lynn Anne Muola Vigdis VandvikAbstract
Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.
Authors
Joyce Machado Nunes Romeiro Jostein Gohli Paal Krokene Tron Haakon Eid Clara Antón FernandézAbstract
Bark beetle (Ips typographus) outbreaks have the potential to damage large areas of spruce-dominated forests in Scandinavia. To define forest management strategies that will minimize the risk of bark beetle attacks, we need robust models that link forest structure and composition to the risk and potential damage of bark beetle attacks. Since data on bark beetle infestation rates and corresponding damages does not exist in Norway, we implement a previously published meta-model for estimating I. typographus damage probability and intensity. Using both current and projected climatic conditions we used the model to estimate damage inflicted by I. typographus in Norwegian spruce stands. The model produces feasible results for most of Norway’s climate and forest conditions, but a revised model tailored to Norway should be fitted to a dataset that includes older stands and lower temperatures. Based on current climate and forest conditions, the model predicts that approximately nine percent of productive forests within Norway’s main spruce-growing region will experience a loss ranging from 1.7 to 11 m3/ha of spruce over a span of five years. However, climate change is predicted to exacerbate the annual damage caused by I. typographus, potentially leading to a doubling of its detrimental effects.
Authors
Dario Isidro Ojeda Alayon Max John Robert L. Hammond Riitta Savolainen Kari Vepsäläinen Torstein KvammeAbstract
The Formicoxenus genus-group comprises six genera within the tribe Crematogastrini. The group is well known for repeated evolution of social parasitism among closely related taxa and cold-adapted species with large distribution ranges in the Nearctic and Palearctic regions. Previous analyses based on nuclear markers (ultraconserved elements, UCEs) and mitochondrial genes suggest close relationship between Formicoxenus Mayr, 1855, Leptothorax Mayr, 1855 and Harpagoxenus Forel, 1893. However, scant sampling has limited phylogenetic assessment of these genera. Also, previous phylogeographic analyses of L. acervorum (Fabricius, 1793) have been limited to its West-Palearctic range of distribution, which has provided a narrow view on recolonization, population structure and existing refugia of the species. Here, we inferred the phylogenenetic history of genera within the Formicoxenus genus-group and reconstructed the phylogeography of L. acervorum with more extensive sampling. We employed three datasets, one data set consisting of whole mitochondrial genomes, and two data sets of sequences of the COI-5P (658 bp) with different number of specimens. The topologies of previous nuclear and our inferences based on mitochondrial genomes were overall congruent. Further, Formicoxenus may not be monophyletic. We found several monophyletic lineages that do not correspond to the current species described within Leptothorax, especially in the Nearctic region. We identified a monophyletic L. acervorum lineage that comprises both Nearctic and Palearctic locations. The most recent expansion within L. acervorum probably occurred within the last 0.5 Ma with isolated populations predating the Last Glacial Maximum (LGM), which are localized in at least two refugial areas (Pyrenean and Northern plateau) in the Iberian Peninsula. The patterns recovered suggest a shared glacial refugium in the Iberian Peninsula with cold-adapted trees that currently share high-altitude environments in this region.
Abstract
No abstract has been registered
Authors
Jyrki Jauhiainen Juha Heikkinen Nicholas Clarke Hongxing He Lise Dalsgaard Kari Minkkinen Paavo Ojanen Lars Vesterdal Jukka Alm Aldis Butlers Ingeborg Callesen Sabine Jordan Annalea Lohila Ülo Mander Hlynur Óskarsson Bjarni D. Sigurdsson Gunnhild Søgaard Kaido Soosaar Åsa Kasimir Brynhildur Bjarnadóttir Andis Lazdins Raija LaihoAbstract
No abstract has been registered
Authors
Anne Marthe Lundby Wendy Marie Waalen Anne Kjersti Uhlen Svein Halvor Knutsen Anne-Berit WoldAbstract
No abstract has been registered
Authors
Lidong Mo Constantin M. Zohner Peter B. Reich Jingjing Liang Sergio de Miguel Gert-Jan Nabuurs Susanne S. Renner Johan van den Hoogen Arnan Araza Martin Herold Leila Mirzagholi Haozhi Ma Colin Averill Oliver L. Phillips Javier G. P. Gamarra Iris Hordijk Devin Routh Meinrad Abegg Yves C. Adou Yao Giorgio Alberti Angelica M. Almeyda Zambrano Braulio Vilchez Alvarado Esteban Alvarez-Dávila Patricia Alvarez-Loayza Luciana F. Alves Iêda Amaral Christian Ammer Clara Antón Fernandéz Alejandro Araujo-Murakami Luzmila Arroyo Valerio Avitabile Gerardo A. Aymard Timothy R. Baker Radomir Bałazy Olaf Banki Jorcely G. Barroso Meredith L. Bastian Jean-Francois Bastin Luca Birigazzi Philippe Birnbaum Robert Bitariho Pascal Boeckx Frans Bongers Olivier Bouriaud Pedro H. S. Brancalion Susanne Brandl Francis Q. Brearley Roel Brienen Eben N. Broadbent Helge Bruelheide Filippo Bussotti Roberto Cazzolla Gatti Ricardo G. César Goran Cesljar Robin L. Chazdon Han Y. H. Chen Chelsea Chisholm Hyunkook Cho Emil Cienciala Connie Clark David Clark Gabriel D. Colletta David A. Coomes Fernando Cornejo Valverde José J. Corral-Rivas Philip M. Crim Jonathan R. Cumming Selvadurai Dayanandan André L. de Gasper Mathieu Decuyper Géraldine Derroire Ben DeVries Ilija Djordjevic Jiri Dolezal Aurélie Dourdain Nestor Laurier Engone Obiang Brian J. Enquist Teresa J. Eyre Adandé Belarmain Fandohan Tom M. Fayle Ted R. Feldpausch Leandro V. Ferreira Leena Finér Markus Fischer Christine Fletcher Lorenzo Frizzera Damiano Gianelle Henry B. Glick David J. Harris Andrew Hector Andreas Hemp Geerten Hengeveld Bruno Hérault John L. Herbohn Annika Hillers Eurídice N. Honorio Coronado Cang Hui Thomas Ibanez Nobuo Imai Andrzej M. Jagodziński Bogdan Jaroszewicz Vivian Kvist Johannsen Carlos A. Joly Tommaso Jucker Ilbin Jung Viktor Karminov Kuswata Kartawinata Elizabeth Kearsley David Kenfack Deborah K. Kennard Sebastian Kepfer-Rojas Gunnar Keppel Mohammed Latif Khan Timothy J. Killeen Hyun Seok Kim Kanehiro Kitayama Michael Köhl Henn Korjus Florian Kraxner Dmitry Kucher Diana Laarmann Mait Lang Huicui Lu Natalia V. Lukina Brian S. Maitner Yadvinder Malhi Eric Marcon Beatriz Schwantes Marimon Ben Hur Marimon-Junior Andrew R. Marshall Emanuel H. Martin Jorge A. Meave Omar Melo-Cruz Casimiro Mendoza Irina Mendoza-Polo Stanislaw Miscicki Cory Merow Abel Monteagudo Mendoza Vanessa S. Moreno Sharif A. Mukul Philip Mundhenk María Guadalupe Nava-Miranda David Neill Victor J. Neldner Radovan V. Nevenic Michael R. Ngugi Pascal A. Niklaus Jacek Oleksyn Petr Ontikov Edgar Ortiz-Malavasi Yude Pan Alain Paquette Alexander Parada-Gutierrez Elena I. Parfenova Minjee Park Marc Parren Narayanaswamy Parthasarathy Pablo L. Peri Sebastian Pfautsch Nicolas Picard Maria Teresa F. Piedade Daniel Piotto Nigel C. A. Pitman Axel Dalberg Poulsen John R. Poulsen Hans Pretzsch Freddy Ramirez Arevalo Zorayda Restrepo-Correa Mirco Rodeghiero Samir G. Rolim Anand Roopsind Francesco Rovero Ervan Rutishauser Purabi Saikia Christian Salas-Eljatib Philippe Saner Peter Schall Mart-Jan Schelhaas Dmitry Schepaschenko Michael Scherer-Lorenzen Bernhard Schmid Jochen Schöngart Eric B. Searle Vladimír Seben Josep M. Serra-Diaz Douglas Sheil Anatoly Z. Shvidenko Javier E. Silva-Espejo Marcos Silveira James Singh Plinio Sist Ferry Slik Bonaventure Sonké Alexandre F. Souza Krzysztof J. Stereńczak Jens-Christian Svenning Miroslav Svoboda Ben Swanepoel Natalia Targhetta Nadja Tchebakova Hans ter Steege Raquel Thomas Elena Tikhonova Peter M. Umunay Vladimir A. Usoltsev Renato Valencia Fernando Valladares Fons van der Plas Tran Van Do Michael E. van Nuland Rodolfo M. Vasquez Hans Verbeeck Helder Viana Alexander C. Vibrans Simone Vieira Klaus von Gadow Hua-Feng Wang James V. Watson Gijsbert D. A. Werner Susan K. Wiser Florian Wittmann Hannsjoerg Woell Verginia Wortel Roderik Zagt Tomasz Zawiła-Niedźwiecki Chunyu Zhang Xiuhai Zhao Mo Zhou Zhi-Xin Zhu Irie C. Zo-Bi George D. Gann Thomas W. CrowtherAbstract
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.