Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Forfattere
Håvard Steinshamn Mats Höglind Øystein Havrevoll Kristin Saarem Inger-Helene Lombnæs Geir Steinheim Asgeir SvendsenSammendrag
The purpose of this study was to compare the effect of grazing on mountain (M) versus cultivated lowland pasture (C) on the performance and meat quality of suckling calves (Experiments 1 and 2). In addition, the effect of finishing on C after M on growth and meat quality was assessed (Experiment 2). Animals on C and M had on average similar live weight gain and carcass weight in the first experiment. However, the performance depended on year as gain and carcass weight was higher on C than on M in the first year and vice versa in the second year. In the second experiment the calves on M had lower gain and carcass weight than on C. Three weeks finishing on C after M compensated to some extent for the lower growth rate on M. Overall, the results indicate that mountain grazing may yield similar growth rates and slaughter weights as improved lowland pasture depending on year. There were only small effects of pasture type on carcass and meat quality traits like conformation, fatness, intramuscular fat and protein content, and fatty acid (FA) composition. The variation in FA composition could to a large extent be explained by difference in fatness with increase in monounsaturated and decrease in polyunsaturated FA with increasing intramuscular fat content, in turn varying between pasture type, experiment and year. There was a tendency that M led to higher proportion of C18:1n-9 and lower proportion of C18:1n-7 than C. which may be due to difference in milk and forage intake. Both pasture types resulted in meat with intramuscular fat with high nutritional value since the n-6/n-3 ratio was low. (C) 2010 Elsevier B.V. All rights reserved.
Sammendrag
The model FROSTOL simulates course of frost tolerance in winter wheat on a daily basis from sowing on as affected by soil temperature (2 cm), snow cover, phenological development, and a genotypic maximum level of frost tolerance (LT 50). A series of cultivar trials in Finland was used to evaluate the model's ability to estimate plant survival in natural field environments during winters with differing weather conditions. Recorded survival was compared with number of intersections between the curves of simulated LT50 and the soil temperature curve for each field. A cumulative stress level (CSL) was calculated based both on number of intersections and FROSTOL simulated stress levels. The correlation between CSL and field recordings was quite low. While the field trials characterize a general ability to stand various types of winter stress, FROSTOL estimates damage caused by the soil temperature regime only. However, FROSTOL simulations seemed to correspond reasonably well to field observations when low temperature was the eventual cause of damage.
Sammendrag
During the first few weeks of life, chicks of the capercaillie (Tetra urogallus) and black grouse (T. tetrix) subsist mainly on insects, of which lepidopteran and hymenopteran larvae are the main components. We studied the breeding phenology of these two species and examined how the timing of breeding was related to the temporal distribution of their larval food source. During a five-year survey, capercaillie mated and hatched consistently four to six days before black grouse. Depending on the vegetation type, the number of larvae (>= 2 mm in length) increased between five and ten times within 10 days, and hatching coincided roughly with the peaks in larval numbers. Due to body growth, however, larval abundance in terms of volume was reached later and occurred 8-9 and 13-14 days after the mean hatching dates in the two species, respectively. Slightly later development of Hymenoptera as compared with that of Lepidoptera contributed in extending the period of high larval abundances for more than one week. The timing of breeding of the two species appears, therefore, to match the temporal distribution of insect food for the fast-growing chicks as they hatch several days before the peak in larval volumes. In one year, when mating was advanced, presumably due to exceptionally warm weather before mating (yet the temporal abundance of larvae was unchanged), breeding success was higher than in years when mating occurred later.
Forfattere
David M. Gadoury Belachew Asalf Tadesse M Heidenreich Maria Herrero MJ Welser Robert C Seem Anne Marte Tronsmo Arne StensvandSammendrag
A collection of four clonal isolates of Podosphaera aphanis was heterothallic and was composed of two mutually exclusive mating types. Cleistothecial initials approximate to 20 to 30 mu m in diameter were observed within 7 to 14 days after pairing of compatible isolates and developed into morphologically mature ascocarps within 4 weeks after initiation on both potted plants maintained in isolation and in field plantings in New York State and southern Norway. Ascospores progressed through a lengthy maturation process over winter, during which (i) the conspicuous epiplasm of the ascus was absorbed; (ii) the osmotic potential of the ascospore cytoplasm increased, resulting in bursting of prematurely freed spores in water; and, finally, (iii) resulting in the development of physiologically mature, germinable, and infectious ascospores. Release of overwintered ascospores from field collections was coincident with renewed plant growth in spring. Overwintered cleistothecia readily dehisced when wetted and released ascospores onto glass slides, detached strawberry leaves, and leaves of potted plants. Plant material exposed to discharged ascospores developed macroscopically visible mildew colonies within 7 to 10 days while noninoculated controls remained mildew free. Scanning electron and light microscopy revealed that cleistothecia of P. aphanis were enmeshed within a dense mat of hyphae on the persistent leaves of field-grown strawberry plants and were highly resistant to removal by rain while these leaves remained alive. In contrast, morphologically mature cleistothecia on leaves of nine deciduous perennial plant species were readily detached by simulated rain and seemed adapted for passive dispersal by rain to other substrates. Contrary to many previous reports, cleistothecia appear to be a functional source of primary inoculum for strawberry powdery mildew. Furthermore, they differ substantially from cleistothecia of powdery mildews of many deciduous perennial plants in their propensity to remain attached to the persistent leaves of their host during the intercrop period.
Forfattere
Eivind Uleberg Theodorus MeuwissenSammendrag
P>The effect on power and precision of including the causative SNP amongst the investigated markers in Quantitative Trait Loci (QTL) mapping experiments was investigated. Three fine mapping methods were tested to see which was most efficient in finding the causative mutation: combined linkage and linkage disequilibrium mapping (LLD); association mapping (MARK); a combination of LLD and association mapping (LLDMARK). Two simulated data sets were analysed: in one set, the causative SNP was included amongst the markers, while in the other set the causative SNP was masked between markers. Including the causative SNP amongst the markers increased both precision and power in the analyses. For the LLD method the number of correctly positioned QTL increased from 17 for the analysis without the causative SNP to 77 for the analysis including the causative SNP. The likelihood of the data analysis increased from 3.4 to 13.3 likelihood units for the MARK method when the causative SNP was included. When the causative SNP was masked between the analysed markers, the LLD method was most efficient in detecting the correct QTL position, while the MARK method was most efficient when the causative SNP was included as a marker in the analysis. The LLDMARK method, combining association mapping and LLD, assumes a QTL as the null hypothesis (using LLD method) and tests whether the 'putative causative SNP' explains significantly more variance than a QTL in the region. Thus, if the putative causative SNP does not only give an Identical-By-Descent (IBD) signal, but also an Alike-In-State (AIS) signal, LLDMARK gives a positive likelihood ratio. LLDMARK detected less than half as many causative SNPs as the other methods, and also had a relatively high false discovery rate when the QTL effect was large. LLDMARK may however be more robust against spurious associations, because the regional IBD is largely corrected for by fitting a QTL effect in the null hypothesis model.
Sammendrag
Norwegian agriculture is mainly dominated by grass-based milk and livestock production, so winter damage to overwintering grasses may have large economic consequences. We assessed the impact of climate change on the winter survival of timothy (Phleum pratense L) and perennial ryegrass (Lolium perenne L) under Norwegian conditions using agroclimatic indices and a simulation model of frost tolerance. This study was based on locally adjusted future climate scenarios (two for the period 2071-2100; one for the period 2020-2049) for six important agricultural regions, represented by one location each. We proposed and validated a rough way to estimate the daily minimum air temperatures from scenario data. compared with the control period 1961-1990, the future hardening period will be shortened by up to 21 days. As a consequence, the modelled maximum frost tolerance is expected to be reduced by up to 3.9 degrees C and 1.9 degrees C for timothy and perennial ryegrass, respectively, under the warmest scenario. In spite of this reduction, the plants are expected to be hardy enough to withstand the predicted autumn frosts, and we also expect a general reduction in the risk of winter frost injuries. The plant data available to this study suggest that agroclimatic indices developed for Canadian conditions can be useful for assessing the hardening status in timothy and perennial ryegrass. However, such indices are less suitable for assessing the risk of plant injury related to frost and ice encasement in Norway, since they do not account for the dynamics of cold adaptation. Although less snow is expected, in most cases this will not be accompanied by an increase in the risk of ice encasement injuries. However, a slight increase in the number of ice encasement events was predicted for one location. An earlier start of growth was predicted for all locations, accompanied at one coastal location by a slightly increased predicted risk of spring frosts. There is little risk of winter injuries related to frost and ice encasement in the hardier grass species timothy. The better overwintering conditions in general indicate that it will be possible to grow perennial ryegrass in areas where it is not grown today, provided the risk of fungal diseases does not increase. (C) 2010 Elsevier B.V. All rights reserved.
Sammendrag
Timothy (Phleum pratense L) is the most important forage grass in Scandinavia and it is therefore highly interesting to study how it will perform in a changing climate. In order to model winter survival, the dynamics of hardening and dehardening must be simulated with satisfactory precision. We investigated an early timothy frost tolerance model (LT50 model), and an LT50 model for winter wheat. Based on the assumption that timothy has no vernalization requirement, unlike winter wheat, but does have the ability to adapt to cold temperatures in a process linked to stage of development, two alternative versions of the winter wheat model were also constructed. In total, these four candidate models were calibrated by a Bayesian approach for the timothy cultivar Engmo. The candidate models were validated using independent observations on LT50 in timothy at different locations reflecting differences in climate. A sensitivity analysis, using the Morris method, to identify important model parameters suggested that there is a connection between frost tolerance and stage of plant development, even if there is no vernalization requirement. The simplified winter wheat model was selected as the best candidate model for LT50 in timothy based on model selection criteria and its ability to capture the hardening and dehardening processes. The results from the Bayesian calibration suggest that there are no major regional differences in Norway calling for regional calibration. However, cultivar-specific calibration is probably required, since there are hardy and less hardy cultivars within the same species. A functional LT50 model would allow risk assessments to be made of future winter survival using specifically tailored and downscaled climate scenarios. (C) 2010 Elsevier B.V. All rights reserved.
Sammendrag
Side effects related to liming have been studied in four dimictic lakes (553-642 ma.s.l.; 59 degrees 57'N) in Finnemarka, a forested area in Southern Norway with poor catchment buffer capacity. Data series from lake profiles have been sampled two decades apart; 10 years prior to liming and after 10 years of liming. Water samples were collected during spring after ice breakup and during summer after the development of thermal stratification. Before liming, there were very low concentrations of bicarbonate (HCO3-; or alkalinity) in the lakes. After 10 years of liming, up to 90% of the ions in hypolimnion originate from lime products. Hence, liming strengthened the chemical stratification and increased the vertical stability. Differences in chemocline developments between lakes were explained by differences in physical properties, i.e. their depth/surface area ratio. The chemocline developments lead to increased concentrations of organic matter in the hypolimnion with a subsequent reduction in oxygen concentrations. Lime additions during late spring, as an alternative to early autumn, lead to pronounced anoxic conditions in the hypolimnion.
Forfattere
Bringas Carlos M. Salas Tore Filbakk Geir Skjevrak Odd-Ivar Lekang Olav Høibø Reidar Barfod SchüllerSammendrag
The effects of drying temperature and storage time on the compressibility and strength of Scots pine pellets were analysed in this article. Compressibility was not affected, whereas the highest pellet strength was obtained from the wood with longest storing and highest drying temperature.
Forfattere
Christian Sonne Jan Ove Bustnes Dorte Herzke Veerle Jaspers Adrian Covaci Duncan Halley Truls Moum Igor Eulaers Marcel Eens Rolf A. Ims Sveinn Are Hanssen Kjell E Erikstad Trond Johnsen Lisbeth Schnug Frank F. Rigét Asger Lundorff JensenSammendrag
Organohalogen contaminants (OHCs) may affect various physiological parameters in birds including blood chemistry. We therefore examined blood plasma clinical-chemical parameters and OHCs in golden eagle, white-tailed eagle and goshawk chicks from Northern Norway. Correlation analyses on pooled data showed that alkaline phosphatase (ALKP), glucose and creatinine were significantly negatively correlated to various OHCs (all: p<0.05; r: -0.43 to -0.55; n=23), while alanine aminotransferase (ALAT), total protein, cholesterol, uric acid, total bilirubin, ratios protein:creatinine and uric acid:creatinine were significantly positively correlated to various OHCs (all: p<0.05; r: 0.43-0.96). Based on these relationships, we suggest that the OHC concentrations found in certain raptor chicks of Northern Scandinavia may impact blood plasma biochemistry in a way that indicates impacts on liver, kidney, bone, endocrinology and metabolism. In order to elaborate further on these relationships and mechanisms, we recommend that a larger study should take place in the near future.