Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Authors
Petter D. Jenssen Tore Krogstad Adam Paruch Trond Mæhlum Kinga Adam Carlos A. Arias Arve Heistad Lena Jonsson Daniel Hellström Hans Brix Markku Yli-Halla Lasse Vråle Matti ValveAbstract
Nine filter beds have been constructed in the Nordic countries, Denmark, Finland, Norway and Sweden. Filter beds consist of a septic tank followed by an aerobic pre-treatment biofilter and a subsequent saturated flow grass-covered filter. Thus, filter beds are similar to subsurface flow constructed wetlands with pre-treatment biofilters. but do not have wetland plants with roots submerged into the saturated filter. All saturated filters contain Filtralite (R) P. a light-weight expanded clay aggregate possessing high phosphorus sorption capacity. The filter bed systems showed stable and consistent performance during the. testing period of 3 years. Removal of organic matter measured as biochemical oxygen demand (BUD) was >80%, total phosphorus (TP) >94% and total nitrogen (TN) ranged from 32 to 66%. Effluent concentrations of fecal indicator bacteria met the European bathing water quality criteria in all systems. One system was investigated for virus removal and somatic viruses were not detected in the effluent. The investigations revealed that the majority of the BOD and nitrogen removal occurred in the pre-treatment filters and the phosphorus and bacteria removal was more prominent in the saturated filters. The saturated filters could be built substantially smaller than the current design guidelines without sacrificing treatment performance. The used filter material met the Norwegian regulations for reuse in agriculture with respect to heavy metals, bacteria and parasites. When saturated with phosphorus, the light-weight aggregate. Filtralite (R) P used in the saturated bed is a suitable phosphorus fertilizer and additionally has a liming effect. (C) 2010 Elsevier B.V. All rights reserved.
Abstract
Dissolved organic nitrogen (DON) plays an important ecological role in forest ecosystems, and its concentration is related to that of dissolved organic carbon (DOC). We investigated DON concentrations and ratios of DOC to DON in throughfall and soil waters in 16 Norway spruce and two Scots pine forest stands sampled at weekly intervals between 1996 and 2006. The stands are all included in the ICP Forests Level II monitoring program and are located throughout Norway. DON concentrations were significantly and positively related to DOC concentrations in throughfall (r (2) = 0.72, p < 0.0001) and soil water at 5, 15, and 40 cm (r (2) = 0.86, 0.32, and 0.84 and p < 0.0001, 0.04, and < 0.0001, respectively). At most sites, the annual median DOC/DON ratio in throughfall ranged from 20.3 to 55.5, which is lower than values in soil water, which ranged from 24.5 to 81.3, gradually decreasing with soil depth. DON concentrations varied seasonally in throughfall at many plots and in soil water at 5-cm depth at one plot only, with higher values in the growing season, but there was no noticeable seasonality at greater depth. The ratios of DOC/DON in soil water were significantly positively related to the C/N ratio in soil at the same depth. Above-ground litter input was the main factor having a significant, negative relationship to DOC/DON in soil water at all depths studied. This might reflect the effect of site conditions on both DOC/DON ratios and litter quantity.
Authors
Venche Talgø G. Chastagner I. M. Thomsen T. Cech K. Riley K. Lange Sonja Klemsdal Arne StensvandAbstract
Current season needle necrosis (CSNN) has been a serious foliage disorder on true fir Christmas trees and bough material in Europe and North America for more than 25 y. Approximately 2-4 weeks after bud break, needles develop chlorotic spots or bands that later turn necrotic. The symptoms have been observed on noble fir (Abies procera), Nordmann fir (A. nordmanniana) and grand fir (A. grandis) on both continents. CSNN was reported as a physiological disorder with unknown aetiology from USA, Denmark, and Ireland, but was associated with the fungus Kabatina abietis in Germany, Austria and Norway. In 2007, a fungus that morphologically resembled K. abietis was isolated from symptomatic needle samples from Nordmann fir from Austria, Denmark, Germany, Norway, and USA. Sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA of these cultures, plus a K. abietis reference culture from Germany (CBS 248.93), resulted in Hormonema dematioides, the imperfect stage of Sydowia polyspora, and thus the taxonomy is further discussed. Inoculation tests on Nordmann fir seedlings and transplants with isolates of S. polyspora from all five countries resulted in the development of CSNN symptoms. In 2009, S. polyspora was also isolated from symptomatic needles from Nordmann fir collected in Slovakia. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Abstract
The effect of potential resistance inducing chemicals on disease development of Fusarium head blight was studied in winter wheat (Triticum aestivum L.). As a pre-screening test, the effect of different treatments on development of Microdochium majus (syn. Microdochium nivale var. majus) was studied in detached leaves. Based on these tests, DL-3-aminobutyric acid, Bion (benzo-(1,2,3) thiadiazole-7-carbothioic acid S-methyl ester), and a foliar fertilizer containing potassium phosphite were selected for further studies. Greenhouse-grown winter wheat was sprayed with aqueous solutions of the potential resistance inducers 7 days prior to Fusarium culmorum point inoculation of the heads. Disease development was registered as number of bleached spikelets per inoculated spike. Spraying plants with the foliar fertilizer reduced the disease severity of F. culmorum by up to 40%. A reduced disease development of M. majus was also observed in detached leaves pre-treated with the foliar fertilizer. When the foliar fertilizer was added to the growth medium, a reduced in vitro growth of M. majus and F. culmorum was observed, indicating that the effect on disease development is at least partly due to a fungistatic effect. No significant reduction in disease development was observed in wheat pre-treated with DL-3-aminobutyric acid or Bion, although these compounds tended to reduce disease development, especially when applied in combination with other potential resistance inducers. We conclude that spraying winter wheat with a solution containing potassium phosphite can reduce development of M. majus and F. culmorum.
Abstract
P>Autumn growth of weeds (i) provides an opportunity for mechanical and chemical control in autumn and (ii) can be important for weed survival and infestation in the following spring. Growth characteristics of Elytrigia repens, Cirsium arvense and Sonchus arvensis in autumn were studied in 2004 and 2005, on plants of different origins and developmental stages (planted at various times from May to August). The plants were grown outdoors in large pots and were assessed during September and October each year. The study showed that (i) all species grew in autumn, but growth ceased and the species withered at different times; S. arvensis first, followed by C. arvense and then E. repens and (ii) less developed (i.e. younger) plants grew later in the autumn. This was demonstrated by leaf area development and biomass distribution during autumn. Older plants had a greater total biomass with relatively more rhizomes or creeping roots than younger plants. In young plants of C. arvense and S. arvensis, the biomass of creeping roots increased during autumn. The total biomass, however, changed little during autumn. These growth patterns indicate that E. repens will be the easiest, S. arvensis the most difficult and C. arvense in between, regarding control of these species in autumn.
Abstract
No abstract has been registered
Authors
Lars Olav Brandsæter H Fogelfors Haldor Fykse E Graglia RK Jensen Bo Melander J Salonen P VanhalaAbstract
The success of weed management aimed at depleting the regenerative structures of perennial weeds depends largely on the sprouting activity of rhizome and root buds. Seasonal variation in sprouting of these buds on Cirsium arvense, Sonchus arvensis and Elymus repens was studied for plants collected from Denmark, Finland, Norway and Sweden. At 2-week intervals from July to October, 5-cm fragments of roots or rhizomes were cut from plants grown in buckets and planted into soil in pots, half of which were placed immediately into growth chambers at 18 degrees C for 4 weeks. The other half of the pots were initially placed in a dark room at 2 degrees C for 4 weeks before being transferred to the same growth chamber, also for 4 weeks. During the growth chamber period, the numbers of emerged shoots in each pot were counted weekly. The sprouting activity of C. arvense and E. repens was relatively uniform during this period and bud dormancy was not apparent. In all ecotypes of S. arvensis, innate bud dormancy developed during the latter part of the growing season. For all three species, differences in sprouting readiness were found among ecotypes. The results imply that C. arvense and E. repens are more likely to be controlled by mechanical measures in autumn than S. arvensis.
Abstract
Isolates of Colletotrichum sublineolum were collected from different sorghum-producing regions of Ethiopia and divided into five groups based on their geographic origin. The growth rate of 50 isolates showed considerable variation: 1·7?5·8 mm day?1, mean 3·3 mm day?1. However, the isolates displayed little variation in colony colour and colony margin, except for isolates from the north, which were different from the others. Amplified fragment length polymorphism analysis of 102 isolates revealed much greater variations among the different groups. Dice similarity coefficients ranged from 0·32 to 0·96 (mean 0·78). Cluster analysis and principal coordinate analysis revealed a differentiation of the isolates according to their geographic origin, and both methods clearly indicated a genetic separation between the southern, the eastern and the other isolates. Analysis of molecular variance (amova) indicated a high level of genetic variation both among (42%) and within (58%) the C. sublineolum sampling sites in Ethiopia. The amova also indicated a high level of genetic differentiation (FST = 0·42) and limited gene flow (Nm = 0·343). The results of this study confirmed the presence of a highly diverse pathogen, which is in agreement with the existence of diverse host genotypes and widely ranging environmental conditions in sorghum-producing regions of the country. Such diversity should be taken into account in future breeding programmes to achieve an effective and sustainable disease management strategy.
Abstract
In terrestrial ecotoxicology there is a serious lack of data for potential hazards posed by engineered nanoparticles (ENPs). This is partly due to complex interactions between ENPs and the soil matrix, but also to the lack of suitable toxicological end points in organisms that are exposed to ENPs in a relevant manner. Earthworms are key organisms in terrestrial ecosystems, but so far only physiological end points of low sensitivity have been used in ecotoxicity studies with ENPs. We exposed the earthworm Lumbricus terrestris to silver nanoparticles and measured their impact on apoptosis in different tissues. Increased apoptotic activity was detected in a range of tissues both at acute and sublethal concentrations (down to 4 mg/kg soil). Comparing exposure in water and soil showed reduced bioavailability in soil reflected in the apoptotic response. Apoptosis appears to be a sensitive end point and potentially a powerful tool for quantifying environmental hazards of ENPs.
Authors
Heleen de Wit Toril Eldhuset Jan MulderAbstract
Dissolved aluminium (Al) in soils, mobilized by acid deposition, is considered a threat to forest health through hampering root growth and nutrient uptake. Since the end of the 1980s dissolved Al in forest soil water plays a key role in the assessment of critical loads of acid deposition. So far, most evidence for toxicity of dissolved Al in forest soil water is based on nutrient solution studies and pot experiments. Here, we present results from one of the few in situ ecosystem-scale forest manipulation experiments to study the effect of Al on mature forest trees. A plotwise addition of dilute AlCl3 was conducted during seven years in an even-aged spruce forest (Picea abies) in an area in Norway with low acid deposition. Soil solution concentrations of Al were increased to potentially toxic levels (up to 500 mu mol L-1) and base cation (Ca + Mg + K) to inorganic Al ratios in the soil solution in the root zone were mostly below 1 in the Al-addition treatments. In the control treatment (only water addition) Al concentrations did not exceed 15 mu mol L-1 and base cation to inorganic Al ratios were above 1. The toxic effects of Al on fine root growth and plant growth found in hydroponic studies and pot trials are not confirmed by this field manipulation. However, magnesium (Mg) contents in needles decreased significantly and persistently in plots with elevated Al concentrations, whereas the needle Ca content did not respond. The depletion of the Mg content in needles is suggested to be due to antagonistic effects of high Al concentrations at the root surface, consistent with observed reductions in Mg to Al ratio of inner bark. This study clearly supports a role for Al in critical load functions for forests as dissolved Al causes a decrease in uptake of Mg. However, other signs of reduced forest vitality were not observed. Soil base cation status may need to be included in risk evaluations of forest health under acid deposition. (C) 2010 Elsevier B.V. All rights reserved.