Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Authors
Lars Sekse Ursula WermundAbstract
No abstract has been registered
Authors
Eivind Vangdal Sigrid FlatlandAbstract
No abstract has been registered
Authors
Martin Lorenz Nicholas Clarke Elena Paoletti Andrzej Bytnerowicz Nancy Grulke Natalia Lukina Hiroyuki Sase Jeroen StaelensAbstract
No abstract has been registered
Authors
Eivind Vangdal M. Vanoli P.Eccher Zerbini S. Jacob A. Torricelli L. SpinelliAbstract
No abstract has been registered
Abstract
Seedlings of open pollinated Picea abies families from Norwegian and Central European parent trees standing at three sites in Norway were tested for timing of bud set at the end of the first growth season together with seedlings from control provenances producing seeds at their geographical origin. The parental origins were confirmed with a maternally inherited mitochondrial marker that distinguishes trees of the Northern European range from those of the Central European range. The seedlings from the families of Central European mother trees producing seeds in Norway had on average a bud set more similar to the families of local Norwegian origin producing seeds at the same site than the provenance of the same Central European origin. It is argued that the rapid change in this adaptive trait from one generation to the next can be explained by recent research results demonstrating that day length and temperature conditions during embryo formation and maturation can influence the phenotypic performance of seedlings in Norway spruce. This effect may influence the fitness of naturally regenerated plants produced in plantations of Central European trees in Norway.
Authors
Carina E. Johansen Christian Lydersen Paul E. Aspholm tore Haug Kit M. KovacsAbstract
No abstract has been registered
Authors
David Bredström Petrus Jönsson Mikael RönnqvistAbstract
A cost-efficient use of harvesting resources is important in the forest industry. The main planning is carried out in an annual resource plan that is continuously revised. The harvesting operations are divided into harvesting and forwarding. The harvesting operation fells trees and puts them in piles in the harvest areas. The forwarding operation collects piles and moves them to storage locations adjacent to forest roads. These operations are conducted by machines (harvesters, forwarders and harwarders), and these are operated by crews living in cities/villages that are within some maximum distance from the harvest areas. Machines, harvest teams and harvest areas have different characteristics and properties and it is difficult to find the best possible match throughout the year. The aim of the planning is to find an annual plan with the lowest possible cost. The total cost is based on three parts: production cost, traveling cost and moving cost. The production cost is the cost for the harvesting and forwarding. The traveling cost is the cost for driving back and forwards (daily) from the home base to the harvest area and the moving cost is associated with moving the machines and equipment between harvest areas. The Forest Research Institute of Sweden (Skogforsk), together with a number of Swedish forest companies, has developed a decision support platform for the planning. One important element of this platform is that it should find high-quality plans within short computational times. One central element is an optimization model that integrates the assignment of machines to harvest areas and schedules the harvest areas during the year for each machine. The problem is complex and we propose a two-phase solution method where, first, we solve the assignment problem and, second, the scheduling. In order to be able to control the scheduling in phase 1 as well, we have introduced an extra cost component that controls the geographical distribution of harvest areas for each machine in phase 1. We have tested the solution approach on a case study from one of the larger Swedish forest companies. This case study involves 46 machines and 968 harvest areas representing a log volume of 1.33 million cubic meters. We describe some numerical results and experience from the development and tests.
Abstract
Information retrieval from spatiotemporal data cubes is key to earth system sciences. Respective analyses need to consider two fundamental issues: First, natural phenomena fluctuate on different time scales. Second, these characteristic temporal patterns induce multiple geographical gradients. Here we propose an integrated approach of subsignal extraction and dimensionality reduction to extract geographical gradients on multiple time scales. The approach is exemplified using global remote sensing estimates of photosynthetic activity. A wide range of partly well interpretable gradients is retrieved. For instance, well known climate-induced anomalies in FAPAR over Africa and South America during the last severe ENSO event are identified. Also, the precise geographical patterns of the annual–seasonal cycle and its phasing are isolated. Other features lead to new questions on the underlying environmental dynamics. Our method can provide benchmarks for comparisons of data cubes, model runs, and thus be used as a basis for sophisticated model performance evaluations.
Authors
Miguel D. Mahecha Markus Reichstein Nuno Carvalhais Gitta Lasslop Holger Lange Sonia I. Seneviratne Rodrigo Vargas Christof Ammann M.Altaf Arain Alessandro Cescatti Ivan A. Janssens Mirco Migliavacca Leonardo Montagnani Andrew D. RichardsonAbstract
The respiratory release of carbon dioxide (CO2) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO2 uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate–carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q10) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q10 is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 ± 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate–carbon cycle feedback than suggested by current carbon cycle climate models.
Abstract
No abstract has been registered