Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Abstract
The water quality in the western part of Lake Vansjø in south eastern Norway is classified as very poor due to excessive growth of blue green algae. It has been shown that phosphorus (P) losses are high from a subcatchment where potatoes and vegetables are grown on 25 % of the agricultural area. The water quality of the lake is of great concern because it is the drinking water reservoir of 60.000 inhabitants and an important recreation area for people living in the area. An integrated project funded by the government was started in 2008 in order to improve the water quality of the lake. Within this project, the public agricultural management, agricultural advisors, farmers and the Norwegian Institute for Agricultural and Environmental Research (Bioforsk) collaborate to attain the target of improved water quality. The farmers are encouraged to sign a contract where they will receive a financial support for covering extra costs for committing to a set of restrictions and mitigation options aiming at reduced P losses. Vegetable- and potato fields give large challenges when aiming at reduced P losses. A large part of the research activity is therefore related to possible mitigation options on these fields, e.g. effect of reduced P fertilization on yields and quality of bulb onion (Allium cepa), carrots (Daucus carota) and white cabbage (Brassica oleracea var. capitata alba), and evaluation of catch crops as a mitigation option for reduced soil erosion from these fields. Development of constructed wetlands to include filters that adsorb P and measurement of P losses through tile drains are also included in the project.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
The effects of genetically modified (GM) maize (Zea mays L.) expressing the Bacillus thuringiensis Berliner Cry1Fa2 protein (Bt) and phosphinothricin or glyphosate herbicide tolerance on soil chemistry (organic matter, N, P, K and pH), compared with non-GM controls, were assessed in field and pot experiments. In the field experiment, NH4+ was significantly higher in soil under the crop modified for herbicide tolerance compared to the control (mean values of 11 and 9.6 mg N/kg respectively) while P was significantly higher in soil under the control compared to under the GM crop (mean values of 6.9 and 6.4 dg P/kg, respectively). No significant differences were found as a result of growing Bt/herbicide tolerant maize. In the pot experiment, using soils from three sites (Gongzhuling, Dehui and Huadian), significant effects of using Bt maize instead of conventional maize were found for all three soils. In the Gongzhuling soil, P was significantly higher in soil under the control compared to under the GM crop (mean values of 4.8 and 4.0 dg P/kg, respectively). For the Dehui soil, the pH was significantly higher in soil under the control compared to under the GM crop (mean values for {H+} of 1.1 and 2.4 μM for the control and the GM crop respectively). In the Huadian soil, organic matter and total N were both higher in soil under the GM crop than under the control. For organic matter, the mean values were 3.0 and 2.9% for the GM crop and the control, respectively, while for total nitrogen the mean values were 2.02 and 1.96‰ for the GM crop and the control respectively. Our results indicate that growing GM crops instead of conventional crops may alter soil chemistry, but not greatly, and that effects will vary with both the specific genetic modification and the soil.