Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2011

Abstract

Background: Polychlorinated biphenyls (PCBs) are widespread in the environment, human food and breast milk. Seafood is known to contain nutrients beneficial for the normal development and function of the brain, but also contaminants such as PCBs which are neurotoxic. Exposure to non-coplanar PCBs during brain development can disrupt spontaneous behaviour in mice and lead to hyperactive behaviour. Humans are chronically exposed to the highest relative levels of organochlorines in early childhood during brain development, though usually at doses which do not give clinical symptoms of toxicity. This study aimed to elucidate the developmental and behavioural effects of 2,2’,4,4’,5,5’ hexachlorobiphenyl (PCB153) in mice, mimicking human exposure during gestation and lactation. Methods: Environmentally relevant doses of PCB153 were added to the experimental diets. Feed concentrations were approximately 0.5, 6.5, and 1500 μg PCB153/kg feed, representing a realistic and a worst case scenario of frequent consumption of contaminated fish. The study also investigated the effects of maternal nutrition, i.e. a standard rodent diet versus a high inclusion of salmon. Mice pups were examined for physical- and reflex development, sensorimotor function and spontaneous behaviour from five days after birth until weaning. A selection of pups were followed until 16 weeks of age and tested for open field behaviour and the acoustic startle response (ASR) with prepulse inhibition (PPI). Blood thyroid hormones and liver enzymes, blood lipids and PCB153 content in fat were examined at 16 weeks. Statistical analyses modelled the three way interactions of diet, PCB exposure and litter size on behaviour, using generalized linear models (GLM) and linear mixed effect models (LME). The litter was used as a random variable. Non-parametric tests were used for pair wise comparisons of biochemical analyses. Results: Litter size consistently influenced pup development and behaviour. Few lasting PCB153 related changes were observed, but results indicated effects on synchronization of physical development. Perinatal PCB153 exposure appeared to reduce habituation and cause aggression in males, though not statistically significant. Conclusions: Litter size and maternal diet influenced physical development and function more than PCB153 in perinatally exposed mouse pups and supports the developmental importance of maternal care and the social environment.

Abstract

Most basidiomycete fungi produce annual short-lived sexual fruit bodies from which billions of microscopic spores are spread into the air during a short time period. However, little is known about the selective forces that have resulted in some species fruiting early and others later in the fruiting season. This study of relationships between morphological and ecological characteristics, climate factors and time of fruiting are based upon thorough statistical analyses of 66 520 mapped records from Norway, representing 271 species of autumnal fruiting mushroom species. We found a strong relationship between spore size and time of fruiting; on average, a doubling of spore size (volume) corresponded to 3 days earlier fruiting. Small-spored species dominate in the oceanic parts of Norway, whereas large-spored species are typical of more continental parts. In separate analyses, significant relationships were observed between spore size and climate factors. We hypothesize that these relationships are owing to water balance optimization, driven by water storage in spores as a critical factor for successful germination of primary mycelia in the drier micro-environments found earlier in the fruiting season and/or in continental climates.

Abstract

The release of carbon dioxide (CO2) from the land surface via different respiratory processes is a major flux in the global carbon cycle, antipodal to CO2 uptake via photosynthesis. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate–carbon cycle feedback. In a recent study we approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q10) across 60 FLUXNET sites. For this objective, we developed a novel methodology that circumvents seasonally confounding effects. Contrary to previous findings, our results suggest that Q10 is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 ± 0.1. However, the shape of the strong relation between photosynthesis and respiration is highly variable among sites. The results may partly explain a less pronounced climate–carbon cycle feedback than suggested by current carbon cycle climate models. In the talk we put our findings into context with other recent results and critically discuss their potential for evaluating temperature sensitivity of respiration in terrestrial biosphere models and parameterizing future land surface schemes.

Abstract

Aims Beech (Fagus sylvatica L.) is an important species in natural and managed forests in Europe. This drought-sensitive species dominates even-aged stands as well more natural stands composed of a mixture of tree species, age and size classes. This study evaluates the extent that heterogeneity in spacing and tree diameter affect the seasonal availability and use of water. Methods Two stands were evaluated: 1) a heterogeneous forest remnant (NAT) with trees up to ca. 300 years old, a mean top height of 28.4 m, and a total of 733 stems ha-1 with stem diameters averaging 18 cm and 2) an even-aged 80-year old stand (MAN), with a height of 25 m, and a total of 283 stems ha-1 with diameters averaging 38 cm. Stem sap flow, Js (g m-2 s-1), was continuously measured in 12 (MAN) and 13 (NAT) trees using 20 mm long heat dissipation sensors. Individual tree measures of sap flow were correlated using non-linear statistical methods with air vapour pressure deficit (D, hPa) and global radiation (Rg, J m-2 day-1), along with contraints imposed by reductions in soil water content (SWC). Soil water content was measured as volumetric % using time domain reflectometry. Important findings The daily integrated Js (Js-sum) for trees growing in the evenly spaced MAN stand and trees in canopy and closed forest positions in NAT stand decreased as the availability of soil moisture was reduced. In the heterogeneous NAT stand, SWC in a recently formed canopy gap remained high throughout the vegetation period. Based on regression models, the predicted relative decrease in Js-sum for dry relative to moist soil water conditions in the closed forest (at mean daily D = 10 hPa) was 7-11% for trees near the gap and 39-42% for trees in the closed forest. In MAN the reduction in Js-sum was 29% in dry relative to moist conditions. Js-sum in the outer 20 mm of the xylem in NAT was lower than that in MAN and the rate of decline in Js with xylem depth was less in NAT than in MAN. In MAN, Js-sum in deep and outer xylem was negatively affected at low soil moisture availability; in NAT this was the case for only the outer xylem indicating that deep roots could be important in supplying water at times of low soil moisture in the upper soil.

Abstract

The emergence and development of organizations of private forest owners in situations where they were not previously collectively organized is a relevant institutional innovation in forestry. This chapter looks at the factors that may have contributed to this institutional change in the following countries: Austria, Bulgaria, Croatia, Finland, Lithuania, Norway, Portugal, Romania, Serbia and Slovakia. The conceptual framework used to present and discuss these country cases considers the following types of factors: (i) the structural changes in the social and economic environment of private forestry when forest owners\" organizations emerged, and the needs for collective action of private forest owners triggered by those changes; (ii) the factors contributing to cope with the \"free riding\" problems involved in collective action; (iii) the mechanisms leveraging the capacities of forest owners\" associations beyond the initial domain where they emerged and contributing to give them the \"critical mass\" needed for having substantial impact on forestry economic conditions; and (iv) the possible existence of \"path dependence\" phenomena, where the conditions prevailing when forest owners\" organizations emerged have a lasting influence throughout their lifetime. With different specifications according to the characteristics of each country, these four sets of factors appear to be useful as a common framework for organizing the explanation of how forest owners\" associations emerged and developed in the countries considered here.

Abstract

We estimated the sensitivity of terrestrial ecosystem respiration to air temperature across 60 FLUXNET sites by minimizing the effect of seasonally confounding factors. Graf et al. now offer a theoretical perspective for an extension of our methodology. However, their critique does not change our main findings and, given the currently available observational techniques, may even impede a comparison across ecosystems.

Abstract

A comparable series of specimens from spruce wood were pre-treated with sodium hydroxide, sodium hydroxide and hydrogen peroxide, or per-acetic acid sequences. The pre-treatments reduced the yield of pulps and their Kappa number noticeably, diminished the degree of polymerization moderately, and increased their brightness. One-step peroxide bleaching of pulps from the pre-treated spruce wood resulted in their higher brightness compared to bleached pulp from sound wood. From the viewpoint of improved properties of pulp, the most efficient were the sodium hydroxide/per-acetic acid and per-acetic acid/sodium hydroxide sequences. The pre-treatments did not influence mechanical strength of the obtained pulps significantly.

Abstract

In forest soils, saprotrophic, necrotrophic and ectomycorrhizal fungi are involved in carbon cycling. Heterobasidion annosum, white rot necrotrophic fungi, is known to decompose wood lignocellulose by secreting a broad range of oxidative enzymes. The genome H. annosum s.l. was sequenced by JGI to a 8.23X coverage and assembled into 39 scaffolds with a total size of 33.7 Mb covering more than 98% of the whole genome. Based on the genome sequence we have characterized gene families coding for enzymes known to participate in conversion of wood lignin: multicopper oxidases (MCOs, 18 genes) as laccases (Lcc), class II peroxidases (8 genes) as manganese peroxidases (MnP), glyoxal oxidases (5 genes, GLOX), quinone-reducing oxidoreductases (19 genes, QOR) and GMC oxidoreductases (12 genes) as aryl alcohol oxidases (AAO). We studied the genomic organisation and phylogeny of these genes as well as their expression using qRT-PCR. Comparative and phylogenetic analyses of genes coding for enzymes involved in wood lignin conversion and decomposition (i.e. lignin-modifying class II peroxidases) reveal differences between white- and brown-rot, necrotrophic and saprotrophic wood-decaying basidiomycetes. Transcript profiling using qRT-PCR revealed that some transcripts were very abundant in lignin-rich media, in cellulose-rich media, in wood or in the free-living mycelium grown liquid culture, suggesting specific functions of these genes, which need to be studied further.

Abstract

Long-term monitoring of headwater semi-natural catchments is used to document persistence and changes in ecosystems. At three headwater catchments in the Bramke basin in Northern Germany, physical and chemical variables in rainfall, soil solution from various depths (20–300 cm) and streamwater have been monitored. The Lange Bramke catchment is largely covered by a Norway spruce (Picea abies, Karst.) stand planted in the 1950ies. Over 29 years, 4310 water samples from streamwater and 5475 soil water samples were analysed for major constituents. Both linear methods (principal component analysis (PCA) and cross correlation (CC)) as well as non-linear methods (isometric feature mapping (ISOMAP) and maximum variance unfolding (MVU)) were used to analyze the spatiotemporal patterns of dissolved major ion concentrations in soil solution and streamwater. This approach provides a multiscale characterisation of links between soil water and streamwater at the catchment scale. Pattern identification augments the interpretation of processes in terms of transport and storage. The long time scales were dominated by trends in ions implicated in soil acidification. This reflects the decreasing input of acid deposition. At the annual scale, where hydrological effects dominate, each of the three adjacent catchments showed different patterns. Various empirical and process-based models have been applied in the past to the Bramke catchments. Results of the data-oriented approach can be used to indicate the potential and limits of process-oriented models for this data set.

Abstract

Small dimensions regenerated forests are considered a useful fuel resource for small local heat plants in Norway, since it is not relevant for the timber industry. Most small heat plants built so far are constructed for moisture contents of about 35% on wet basis. Therefore, the material must be dried. Because artificial drying induces additional costs, storing the material in piles roadside as whole trees until desired moisture content is obtained is considered beneficial. Traditionally, leaf seasoning has been considered an efficient method. To increase the understanding of these processes, a study on drying whole trees in piles has been accomplished at three different locations with different climatic conditions. The study focuses on the following explanatory variables: harvesting season, location, climatic conditions, position in the pile, tree species, and relative crown length. The effect of covering the piles in order to reduce the moisture uptake during winter was also studied. Models, estimating the moisture content with time profiles, were developed. During spring and summer the moisture content was reduced to approximately 35% also when the material was harvested in the autumn the year before. The climatic conditions were important for the drying result, but drying was effective also in the moist climate in western Norway. Covering the dry piles before the winter was important in order to maintain the requested moisture content. The effect of covering the material harvested in autumn was limited.