Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2010

Abstract

One of the main challenges for new wood protection systems is to predict in a fast and accurate way service life in use class 3 (above ground) and use class 4 (in soil or fresh water contact). New environmentally benign wood protection systems are expected to have different modes of action against wood deteriorating fungi compared to the traditional preservatives, change in water sorption being one of them. Therefore it is of importance to evaluate new treated wood products in a broad range of exposure situations, also exploring the variation within use class 3 and 4. Due to the restrictions in the use of chromium containing wood preservatives, a range of studies have been published the last decade evaluating the performance of new products after laboratory or field test exposure. However, there is still a lack of studies comparing the same material in different field exposure situations. This study evaluates the efficacy of 13 novel wood protecting systems in three different above ground tests (horizontal double layer, block test and mini stakes) and two different in-ground tests (EN 252 and mini stakes). Scots pine (Pinus sylvestris L.) sapwood from the same wood source was used for all treatments. For each wood protecting system the wood specimens for all five tests were treated together in the same batch. The results after five years of field exposure are presented. In the three above ground tests no or only initial signs of decay were detected after five years (not reaching a mean rating of 1). The decay rate in soil contact was faster than above ground, but after five years only untreated wood (controls) failed in both tests. No significant difference in performance was found between the two tests in soil contact. The use of median decay rate values gave an earlier indication of performance than the use of mean decay rate values.

To document

Abstract

A research has been undertaken studying pesticide residues in water from greenhouses and the use of soils and filter materials to reduce such losses. The pesticides detected in water samples collected downstream greenhouses include 9 fungicides, 5 herbicides and 4 insecticides. 10 compounds from flower and vegetable productions were frequently found to exceed environmental risk levels, and with a few exceptions the compounds were found in higher concentrations than those typically found in agricultural runoff. Some compounds were found in high concentrations (.1mg/l) in undiluted runoff from greenhouses producing vegetables. Nutrient concentrations in the runoff were also sporadically very high, with phosphorous values varying between 0.85 and 7.4mgP/l, and nitrogen values between 7.5 and 41.4mgN/l. Undiluted runoff from the productions showed values of 60mgP/l and 300mgN/l. High values of pesticides correlated with high values of nutrients, especially P. Column experiments using a sandy agricultural soil and stock solutions of non-polar and slightly polar pesticides mixed with a complex binder and nutrients showed a significant reduction for nearly all of the compounds used, indicating that transport through soil will reduce the concentrations of the studied pesticides. The pesticide adsorption capacity of the filter materials pine bark, peat, Sphagnum moss, compost, oat straw, ferrous sand and clay soil were tested in batch and column experiments. Adsorption were studied contacting the filter materials with aqueous solutions containing greenhouse production pesticides. The batch experiments showed that pine bark and peat, both combining a high content of organic matter with a low ph, provided the highest adsorption for most of the tested pesticides. Sphagnum moss, compost and oat straw also showed high adsorption for most of the pesticides, while the mineral filters provided the lowest adsorption (30-55%). Further column experiments confirmed these results, displaying the best removal efficiency in the organic materials, varying from 200mg/g in compost, to 500mg/g in moss, straw and pine bark.