Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2016
Authors
Adam O'tooleAbstract
keywords: biokull, biochar, capture+
Authors
Daniel RasseAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Priit Tammeorg Ana Catarina Bastos Simon Jeffery Frédéric Rees Jürgen Kern Ellen R. Graber Maurizio Ventura Mark Kibblewhite António Amaro Alice Budai Cláudia M.d.S. Cordovil Xavier Domene Ciro Gardi Gabriel Gascó Jan Horak Claudia Kammann Elena Kondrlova David Laird Susana Loureiro Martinho A.S. Martins Pietro Panzacchi Munoo Prasad Marija Prodana Aline Peregrina Puga Greet Ruysschaert Lidia Sas-Paszt Flávio C. Silva Wenceslau Geraldes Teixeira Giustino Tonon Gemini Delle Vedove Costanza Zavalloni Bruno Glaser Frank G. A. VerheijenAbstract
Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.
Abstract
In this chapter we will focus on the tick Ixodes ricinus, with its main geographical distribution in Europe. It is known to transmit a variety of pathogens, among them Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. Tick population control is one of the measures to reduce the incidence of tick-borne diseases. Due to non-target effects of chemical acaricides, acquired resistance against chemical acaricides and increased regulations, there is a demand for sustainable control measures that may be used in integrated vector management (IVM) of ticks. This chapter describes and evaluates the present knowledge on biological control of I. ricinus as an alternative to the use of chemical acaricides. Biological control makes use of living organisms (e.g. fungi, bacteria, nematodes, invertebrate predators, parasitoids) to suppress a pest population. The natural occurrence of these organisms in I. ricinus and the use of these organisms as biological control agents against I. ricinus are reviewed. Entomopathogenic fungi (Beauveria and Metarhizium spp.) are the most commonly used biocontrol agents against ticks. A variety of nematode species are also shown to be effective against different tick species, but the knowledge on the operational use of invertebrate predators and parasitoids to control ticks is limited. We conclude that there are several candidates for the biological control of ticks, but that the knowledge on the natural occurrence and efficacy of these to control I. ricinus populations is very limited. There is, therefore, a need of more studies on naturally occurring enemies of I. ricinus to be able to suggest possible biocontrol candidates. These candidates should be tested in controlled laboratory and field studies with the aim to develop elegant, precise and effective biocontrol strategies for the control of I. ricinus that may be used alone or in combination with other control strategies in IVM.
Abstract
No abstract has been registered
Abstract
Aphids in cereals are an important problem in Europe. Entomopathogenic fungi in the Phylum Entomophthoromycota are among their natural enemies. Under certain conditions, they can cause epizootic events and control pest aphid populations. This epizootic development is affected by many abiotic and biotic factors such as aphid species and their host plant (including weeds within the crop), fungal species and isolates, and temperature. Studies from Denmark, UK, Slovakia and suggest that the genus Pandora is the most prevalent fungal pathogen of the English grain aphid (Sitobion avenae). Which fungal species that is the most prevalent in populations of the other important aphid species in cereals in Europe, the Bird cherry-oat aphid (Rhopalosiphum padi), is less clear. We chose, however, to use Pandora to assess the biological control potential of Entomophthoromycota against aphids in cereals and to produce data that might be used in a pest-warning model incorporating the effect of this natural enemy. This was done by conducting laboratory studies on the virulence of two Pandora isolates (collected in the same field) on R. padi and Myzus persicae at three temperatures (12, 15 and 18◦C). M. persicae is a polyphagous aphid that may be present on weeds. It can be an alternative host for Pandora and hence might also affect the epidemic development of Pandora in aphids that are cereal pests. Our preliminary results show that R. padi is more resistant to the tested Pandora isolates than M. persicae. The two Pandora isolates had different virulence in the two aphid species tested. The temperature did not influence the virulence.
Abstract
No abstract has been registered
Abstract
Black currant is a woody plant in which growth and development are intimately controlled by, and synchronised with seasonal changes in photoperiod and temperature. Concern over the potential impact of global warming on plant phenology and yield, led us to initiate relations. An experimental system with single-stemmed potted plants was developed which allowed a research program to address both qualitative and quantitative assessment of climatic responses. Growth cessation and flowering were both induced by short days, with critical photoperiods of approximately 17 and 16 h, respectively, for most cultivars. Both processes were advanced and promoted by increasing autumn temperature with an optimum in the 18-21°C region. An exception was cultivars of high-boreal origin, which had an early growth cessation at low temperature. Unexpectedly, however, not all plants flowered after exposure to 10 h photoperiod, and the number of flowers decreased as the photoperiod was reduced from the near-critical length of 15 h. This was due to premature dormancy induced by an abrupt change to photoperiods well below the critical level. Field experiments revealed that cultivars of varying geographic origin, exhibited a typical latitudinal cline in their photoperiodically controlled timing of growth and flowering responses. Breaking of bud dormancy and promotion of flower bud development required chilling at -5°C for 14 weeks or more for optimal responses. However, while chilling at -10°C for 8 weeks resulted in dormancy release, continued chilling to 16 weeks inhibited bud break completely. We therefore propose that excessive chilling induces secondary bud dormancy in black currant. The observed high chilling requirements of black currants concur with the reported vulnerability of this crop to declining winter chill in the wake of the ongoing global warming. Furthermore, such conditions also induce a particularly deep bud dormancy state that further increases the chilling need.
Authors
Rasmus John Normand Frandsen Silas A. Rasmussen Peter B. Knudsen Silvio Uhlig Dirk Petersen Erik Lysøe Charlotte H. Gotfredsen Henriette Giese Thomas O. LarsenAbstract
Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/− 1.9 μM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies.