NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.



We determined the mitogenome of Cyclopterus lumpus using a hybrid sequencing approach, and another four closely related species in the Liparidae based on available next-generation sequence data. We found that the mitogenome of C. lumpus was 17,266 bp in length, where the length and organisation were comparable to those reported for cottoids. However, we found a GC-homopolymer region in the intergenic space between tRNALeu2 and ND1 in liparids and cyclopterids. Phylogenetic reconstruction confirmed the monophyly of infraorders and firmly supported a sister-group relationship between Cyclopteridae and Liparidae. Purifying selection was the predominant force in the evolution of cottoid mitogenomes. There was significant evidence of relaxed selective pressures along the lineage of deep-sea fish, while selection was intensified in the freshwater lineage. Overall, our analysis provides a necessary expansion in the availability of mitogenomic sequences and sheds light on mitogenomic adaptation in Cottoidei fish inhabiting different aquatic environments.


Continued anthropogenic environmental change is wreaking havoc on natural populations, with the stresses and pulses of induced ecological processes affecting a species' local habitat, resulting in inadvertent distribution shifts, hybridization events, and eventual biodiversity loss. It is more critical than ever to monitor the unintended consequences of human activity on not only natural populations, but also community structures and ecosystems. DNA-based (genetic and genomic) monitoring is a critical component of biodiversity monitoring because it allows for the tracking and quantification of temporal changes in population genetic metrics or other population data. Genetic/genomic monitoring enables the estimation of a variety of biological parameters, including demographic parameters (abundance, occupancy, hybridization, and disease status), population genetic parameters (genetic diversity, structure, and effective population size), and responses to anthropogenic selective pressures (exploitation, biological invasions, and climate change). This keynote address will highlight the practical implications of integrating genetic data into management, conservation objectives, and policymaking, as well as capacity building through international partnerships, using case studies from the Norwegian Barents Region.