Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Authors
Trygve S. Aamlid Anne Falk Øgaard T. Krogstad M. Woods Yajun Chen K. Sintorn D. Dokkuma Wolfgang Prämassing D. CleaverAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Legume-based cropping system and Brachiaria forage system could play a significant role in enhancing food and nutrition security and sustainable intensifications of African agriculture. To reveal this potential, a comprehensive review of literatures and assessment was performed using key indicators in relation to food and nutrition quality, agro-ecological services and socioeconomic benefits. The key indicators for legumes intercropping systems include: Grain yield, soil organic matter, food availability, nutritive values of legumes, maize and millets- based foods, proportion of income from crop sale and percentage of farmers aware and/or adopting intercropping. In the case of Brachiaria system, the forage biomass, milk yield, availability of milk, milk nutrition contents, income from Brachiaria grass and milk sale and people practising the Brachiaria technology were considered key indicators. Both systems showed positive impacts and contribute to a range of the United Nation’s sustainable development goals including 1, 2, 3, 12, 13 and 15 and other associated targets. Integrating legume-based cropping systems and Brachiaria forage system will enhance contributions of smallholder farmers to food and nutrition security. The necessary changes needed in technology, institutions and policies to upscale legume-based cropping systems and Brachiaria forage system were suggested. These changes include improved varieties, quality seeds, improved cultivation practices, market provision, effective extension and advisory services and support to the seed productions and distribution systems, among others. Yet, to fully tap the potentials of legume-based and Brachiaria forage systems sustainably and raise the profile of these climate smart systems, context specific research measures are necessary.
Abstract
No abstract has been registered
Abstract
Sweet cherry production worldwide is grown in the open land. Production technique is more or less similar with scions grafted on dwarfing and semi-dwarfing rootstock and trees arranged in single rows. Sweet cherries can be grown in Norway in areas with suitable local climatic conditions up to 60°N. All orchards have high-density planting systems and are rain covered. Rain-induced fruit cracking in cherries remains a problem at an international level. The most common systems in Norway are multibay high tunnel systems and retractable rain covers. Covered orchard tunnel systems offer not only the advantage of rain exclusion but also allow additional manipulation of the environment, tree growth and fruiting. In general, sweet cherry high tunnel production gives increased yields of larger fruit than in the open land, but investment costs are higher. One more advanced way of producing sweet cherries is to grow the trees in small pots in greenhouses. A greenhouse gives opportunity to control the temperature regime and in that way program the maturity of the fruits. Research is conducted to test different cultivars, rootstocks, training methods in high-density production systems (1 tree m-2) with different fertigation levels. Preliminary results show that the yield potential is much higher than in the open land with larger fruits. Challenges are to optimize the water and nutrition supply and adjust the temperatures to obtain large yields of high quality fruits during different periods of the season.
Authors
Venche TalgøAbstract
No abstract has been registered
Authors
Jörn Strassemeyer Ole Martin Eklo Marianne Stenrød Eivind Solbakken Roar Lågbu Tor-Einar Skog D Daehmlow Anto Raja DominicAbstract
No abstract has been registered
Authors
Fatima Heinicke Xiangfu Zhong Manuela Zucknick Johannes Breidenbach Arvind Yegambaram Meenakshi Sundaram Siri Tennebø Flåm Magnus Leithaug Marianne Dalland Andrew Farmer Jordana M. Henderson Melanie A. Hussong Pamela Moll Loan Nguyen Amanda McNulty Jonathan M. Shaffer Sabrina Shore Hoichong Karen Yip Jana Vitkovska Simon Rayner Benedicte Alexandra Lie Gregor Duncan GilfillanAbstract
High-throughput sequencing is increasingly favoured to assay the presence and abundance of microRNAs (miRNAs) in biological samples, even from low RNA amounts, and a number of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng) inputs. Although biases introduced during library preparation have been documented, the relative performance of current reagent kits has not been investigated in detail. Here, six commercial kits capable of handling <100ng total RNA input were used for library preparation, performed by kit manufactures, on synthetic miRNAs of known quantities and human total RNA samples. We compared the performance of miRNA detection sensitivity, reliability, titration response and the ability to detect differentially expressed miRNAs. In addition, we assessed the use of unique molecular identifiers (UMI) sequence tags in one kit. We observed differences in detection sensitivity and ability to identify differentially expressed miRNAs between the kits, but none were able to detect the full repertoire of synthetic miRNAs. The reliability within the replicates of all kits was good, while larger differences were observed between the kits, although none could accurately quantify the relative levels of the majority of miRNAs. UMI tags, at least within the input ranges tested, offered little advantage to improve data utility. In conclusion, biases in miRNA abundance are heavily influenced by the kit used for library preparation, suggesting that comparisons of datasets prepared by different procedures should be made with caution. This article is intended to assist researchers select the most appropriate kit for their experimental conditions.
Abstract
No abstract has been registered
Authors
Kamal Atmeh Anne Loison Nicolas Morellet A. J. Mark Hewison P. Marchand Mathieu Garel Erling Johan Solberg Morten Heim Bernt-Erik Sæther Ivar Herfindal Atle Mysterud Erling Meisingset Martin-Hugues St-Laurent Guillaume PéronAbstract
No abstract has been registered