Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

The climate is an aggregate of the mean and variability of a range of meteorological variables, notably temperature (T) and precipitation (P). While the impacts of an increase in global mean surface temperature (GMST) are commonly quantified through changes in regional means and extreme value distributions, a concurrent shift in the shapes of the distributions of daily T and P is arguably equally important. Here, we employ a 30‐member ensemble of coupled climate model simulations (CESM1 LENS) to consistently quantify the changes of regionally and seasonally resolved probability density functions of daily T and P as function of GMST. Focusing on aggregate regions covering both populated and rural zones, we identify large regional and seasonal diversity in the probability density functions and quantify where CESM1 projects the most noticeable changes compared to the preindustrial era. As global temperature increases, Europe and the United States are projected to see a rapid reduction in wintertime cold days, and East Asia to experience a strong increase in intense summertime precipitation. Southern Africa may see a shift to a more intrinsically variable climate but with little change in mean properties. The sensitivities of Arctic and African intrinsic variability to GMST are found to be particularly high. Our results highlight the need to further quantify future changes to daily temperature and precipitation distributions as an integral part of preparing for the societal and ecological impacts of climate change and show how large ensemble simulations can be a useful tool for such research.

To document

Abstract

The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer‐specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm‐specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real‐time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate “big data” in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture.

Abstract

Numerous species of wild berries are abundant in the Nordic forests, mountains and peat lands. They ripen throughout the early summer until late autumn. Both lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), that are among the most picked wild berries, are characteristic field layer species in boreal forests. Other species that have potential of better exploitation are cloudberry (Rubus chamaemorus), crowberry (Empeterum nigrum), bog blueberry (Vaccinium uliginosum), arctic bramble (Rubus arcticus), wild strawberries/woodland strawberries (Fragaria vesca) and wild raspberries (Rubus idaeus). Here we present a mini-review about properties and potentials of Nordic wild berries.