Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Impact of orchard management technologies on apple fruit internal quality was tested in several trials performed at the Institute of Horticulture, Lithuanian Research Center for Agriculture and Forestry during 2010-2019. Studies were focused mainly on the research of bioactive compounds: triterpenes and phenols. Studies included rootstocks, crop load regulation, planting distances, fruit position in the tree crown, geographical locations, regulation of tree vegetative growth by root pruning, trunk incision and prohexadione-calcium. ‘Auksis’ apple fruits on P 67 rootstock and ‘Ligol’ on P 61 and P 22 had the highest total phenol content, while the lowest total phenol content of both tested cultivars was recorded on M.9 and P 62 rootstocks. Increasing crop load on the tree led to significant increase of phenols and triterpenes. Higher fruit triterpene concentration was recorded on denser planted trees. Root pruning increased accumulation of phenols, while by the application of prohexadione-calcium the accumulation of phenols decreased significantly. Lower triterpene concentration was recorded when tree growth was controlled by trunk incision. Fruits from the top of the tree accumulated significantly higher amount of phenolic compounds, whereas fruits inside the tree crown were characterized by the highest amount of triterpene compounds. Colder climate during the vegetation and shorter vegetation period resulted in significantly higher accumulation of phenolic and triterpene compounds in apples grown in Estonia comparing to fruits grown in Poland. New scientific results on the impact of modern technologies on the changes of internal fruit quality parameters could increase consumption of apples.

Abstract

In total 14 cherry cultivars and advanced selections released by the Pacific Agri-Food Research Centre (PARC-Summerland), Agriculture and Agri-Food Canada were tested at NIBIO Ullensvang during 2010-2016. The scions were grafted on the dwarfing Gisela 5 rootstock and planted in high tunnels. Main phenological, vegetative growth and productivity characteristics and fruit quality parameters were evaluated and detailed information about the different cultivars and selections are presented. After comprehensive studies the cultivars ‘SPC 108’ and ‘Starblush’ are recommended for commercial fruit growing in Norway in addition to the main cultivar ‘Lapins’. ‘SPC 107’ is recommended for home gardens. The selection SPC 263 and ‘Sofia’ showed outstanding fruit quality parameters, but had low productivity due to stunted tree growth. Grafting on more vigorous rootstocks than Gisela 5 is recommended.

To document

Abstract

In 2016, the Sustainable Development Working Group (SDWG) endorsed The Arctic as a Food Producing Region research project. Involving research teams from Iceland, Norway, Canada, Greenland, and Russia, the objective of the project was to assess the potential for increased production and added value of foods originating from the Arctic, with the overarching aim of improving food security, while enhancing the social and economic conditions of Arctic communities. Although the Arctic was recognised as an important food-producing region, there was a shared sense that the Arctic was not meeting its full potential, either in terms of satisfying local food needs or for maximising its domestic or international export potential. Yet beyond speculation, much of which was informed by individual or anecdotal experience, there was little understanding of the current production capacities of Arctic food sectors or where opportunities may lie for sustainable growth. The aim of the project was, therefore, threefold: (1) complete an inventory of the current levels of Arctic food production in terms of products, volumes, revenues; (2) identify the constraints and opportunities for increased production value-added opportunities; and (3) identify potential pathways and new value chains for expanding Arctic food production and distribution opportunities. .............