Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2009

Abstract

Continuous light is a promising method to reduce the problems with rose powderymildew in greenhouse rose production. The effects of such a light regime on the performance of insect pests on roses have so far not been investigated. In the present study, survival, developmental time, and reproduction during one generation of the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), were characterized on roses, Rosa x hybrida cv. Passion, grown in climate chambers with long-day conditions (L20:D4) or continuous light (L24:D0) at 21 oC and fluctuating relative humidity (mean 74%, range 47–96%). Whiteflies reared under continuous light had lower immature survival and fecundity and shorter female longevity than whiteflies reared under long-day conditions, but immature developmental time was only slightly affected. Life-table analysis showed that the net reproductive rate (Ro) and intrinsic rate of natural increase (rm) were reduced by 85 and 76%, respectively, and the time for the population to double its size (D) was 4.2 times longer under continuous light. Thismean that the whitefly population growth under continuous light was strongly reduced compared with the traditional light regime used in rose production.

To document

Abstract

Field experiments in the high rainfall zone (HRZ) and the medium rainfall zone (MRZ) in Zambia were designed to determine the natural occurrence of fumonisins (FB1-2) in Zambian maize hybrids, accumulation of FB1-2 resulting from artificial inoculation with Fusarium verticillioides and effects of climate and planting time on FB1-2 in maize. Combined FB1-2 concentrations varied from 0 to 13,050 ng/g, with an overall mean of 666 ng/g. Maize from the HRZ had low incidences of FB1-2-positive samples (mean 41%) which contained FB1-2 below 500 ng/g. In the MRZ, higher incidences (mean 97%) and concentrations (40% of samples > 1,000 ng/g) were recorded in two out of three years. There was no correlation between mean location FB1-2 concentrations in individual years and precipitation, number of rain days or monthly precipitation. Postponing the planting time with 10 or 20 days did not significantly affect FB1-2 concentration, but it reduced the yields in some years.

Abstract

Regulation of flowering time in Arabidopsis thaliana is controlled by a network of pathways integrating environmental and internal signals. Two of these pathways, the vernalization and photoperiodic pathways, mediate responses to prolonged cold period and photoperiod, respectively. A number of A. thaliana populations from high-latitude and high-altitude locations in Norway were collected and phenotyped for flowering time in response to 5 photoperiods and 5 vernalization treatments. Vernalization and photoperiodic sensitivity were not correlated with latitude but rather with climatic factors such as winter temperature and precipitation that do not vary with latitude, especially in coastal environments. Coastal populations, both from subarctic and intermediate latitudes, were rather insensitive towards the length of the vernalization treatment but very sensitive towards differences in photoperiods. Stronger photoperiod sensitivity in coastal populations might be a necessary adaptation for sensing the onset of spring in regions with relatively mild and unpredictable winter climates as opposed to continental climates with more stable winters. FLC sequence variation was only partly associated with vernalization response, whereas variation in transcript levels of CRY2, TOC1 and GI was correlated with photoperiodic responses. This suggests that local adaptation of populations may be partly mediated by photoreceptors and circadian clock pathways.

To document

Abstract

In woody plants of the temperate zone short photoperiod (SD) leads to growth cessation. In angiosperms CONSTANS (CO) or CO-like genes play an important role in the photoperiodic control of flowering, tuberisation and shoot growth. To investigate the role of CO-like genes in photoperiodic control of shoot elongation in gymnosperms, PaCOL1 and PaCOL2 were isolated from Norway spruce. PaCOL1 encodes a 3.9 kb gene with a predicted protein of 444 amino acids. PaCOL2 encodes a 1.2 kb gene with a predicted protein of 385 amino acids. Both genes consist of two exons and have conserved domains found in other CO-like genes; two zinc finger domains, a CCT and a COOH domain. PaCOL1 and PaCOL2 fall into the group 1c clade of the CO-like genes, and are thus distinct from Arabidopsis CO that belongs to group la. Transcript levels of both PaCOL-genes appear to be light regulated, an increasing trend was observed upon transition from darkness to light, and a decreasing trend during darkness. The increasing trend at dawn was observed both in needles and shoot tips, whereas the decreasing trend in darkness was most prominent in shoot tips, and limited to the late part of the dark period in needles. The transcript levels of both genes decreased significantly in both tissues under SD prior to growth cessation and bud formation. This might suggest an involvement in photoperiodic control of shoot elongation or might be a consequence of regulation by light. (C) 2008 Elsevier Masson SAS. All rights reserved.