Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Leif Sundheim Christer Magnusson Arild Sletten Per Hans Micael Wendell Guro Brodal Åshild Ergon Halvor Solheim Anne Marte Tronsmo Trond RafossAbstract
No abstract has been registered
Authors
Trond Rafoss Daniel Flø Leif Sundheim Per Hans Micael Wendell Guro Brodal Åshild Ergon Christer Magnusson Arild SlettenAbstract
No abstract has been registered
Abstract
The estimated potential yield losses caused by plant pathogens is up to 16% globally (Oerke 2006) and most research in plant pathology aims to reduce yield loss in our crops directly or indirectly. Yield losses caused by a certain disease depend not only on disease severity, but also on the weather factors, the pathogen’s aggressiveness, and the ability of the crop to compensate for reduced photosynthetic area. The yield loss-disease relationship in a certain host-pathogen system might therefore change from year to year, making predictions for yield loss very difficult at the regional or even at the farmer’s level. However, estimating yield losses is essential to determine disease management thresholds at which acute control measures such as fungicide applications, or strategic measures such as crop rotation or use of resistant cultivars are economically and environmentally sensible. Legislation in many countries enforces implementation of integrated pest management (IPM), based on economic thresholds at which the costs due to a disease justify the costs for its management. Without a better understanding of the relationship between disease epidemiology and yield loss, we remain insufficiently equipped to design adequate IPM strategies that will be widely adapted in agriculture. Crop loss studies are resource demanding and difficult to interpret for one particular disease, as crops are usually not invaded by only one pest or pathogen at a time. Combining our knowledge on disease epidemiology, crop physiology, yield development, damage mechanisms involved, and the effect of management practices can help us to increase our understanding of the disease-crop loss relationship. The main aim of this paper is to review and analyze the literature on a representative host-pathogen relationship in an important staple food crop to identify knowledge gaps and research areas to better assess yield loss and design management strategies based on economic thresholds. Wheat is one of the most important staple foods worldwide and is susceptible to several important plant diseases. In our article, we focus on Septoria nodorum blotch (SNB) or Glume blotch of wheat as an example for a stubble-borne, seed-transmitted disease with a worldwide distribution causing considerable and regular yield losses. In their review on yield losses due to wheat pathogens in Australia, Murray and Brennan (2009) estimated the current annual economic loss due to SNB as high as $108 × 106, with potential costs as high as $230 × 106. The causal fungus, Parastagonospora nodorum, is currently serving as a model organism for molecular studies of the intimate relationship between necrotic effector-producing fungal strains and their corresponding susceptibility genes present in wheat cultivars (Oliver et al. 2012). In this paper, we analyze the literature on the biology of this common wheat pathogen, the yield loss it reportedly has caused, and the effect of control strategies to reduce this loss. Based on this analysis, we will evaluate the use of common management practices to reduce disease-related yield loss and identify related research needs.
Authors
Andrew D. Armitage Erik Lysøe Charlotte F. Nellist Laura A. Lewis Liliana M. Cano Richard J. Harrison May Bente BrurbergAbstract
The oomycete pathogen Phytophthora cactorum causes crown rot, a major disease of cultivated strawberry. We report the draft genome of P. cactorum isolate 10300, isolated from symptomatic Fragaria x ananassa tissue. Our analysis revealed that there are a large number of genes encoding putative secreted effectors in the genome, including nearly 200 RxLR domain containing effectors, 77 Crinklers (CRN) grouped into 38 families, and numerous apoplastic effectors, such as phytotoxins (PcF proteins) and necrosis inducing proteins. As in other Phytophthora species, the genomic environment of many RxLR and CRN genes differed from core eukaryotic genes, a hallmark of the two-speed genome. We found genes homologous to known Phytophthora infestans avirulence genes including Avr1, Avr3b, Avr4, Avrblb1 and AvrSmira2 indicating effector sequence conservation between Phytophthora species of clade 1a and clade 1c. The reported P. cactorum genome sequence and associated annotations represent a comprehensive resource for avirulence gene discovery in other Phytophthora species from clade 1 and, will facilitate effector informed breeding strategies in other crops.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
NIBIO BOOK 4(4):33-34
Abstract
The fungus Neonectria fuckeliana has become an increasing problem on Norway spruce (Picea abies) in the Nordic countries during recent years. Canker wounds caused by the pathogen reduce timber quality and top-dieback is a problem for the Christmas tree industry. In this study, four inoculation trials were conducted to examine the ability of N. fuckeliana to cause disease on young Norway spruce plants and determine how different wound types would affect the occurrence and severity of the disease. Symptom development after 8–11 months was mainly mild and lesion lengths under bark were generally minor. However, N. fuckeliana could still be reisolated and/or molecularly detected. Slow disease development is in line with older studies describing N. fuckeliana as a weak pathogen. However, the results do not explain the serious increased damage by N. fuckeliana registered in Nordic forests and Christmas tree plantations. Potential management implications, such as shearing Christmas trees during periods of low inoculum pressure, cleaning secateurs between trees, and removal and burning of diseased branches and trees to avoid inoculum transfer and to keep disease pressure low, are based on experiments presented here and experiences with related pathogens.