Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2013

Abstract

Four chapters follow in this book: Background, Challenges, Foresight, and Conclusion – What’s Next. The first chapter, Background, takes stock of land monitoring practices in European countries. The second chapter, Challenges, relates a range of issues encountered with land monitoring as it is currently practised and how such matters can be better resolved through improved collaboration. Building upon these findings, the third chapter, Foresight, outlines the HELM (Harmonised European Land Monitoring) roadmap towards a mature, integrated pan-European land monitoring system based upon aggregated national data which are supplemented by centrally produced base data. The concluding chapter, What’s Next, sets the HELM project and its recommendations in context.

Abstract

There is a growing demand for reliable information about land cover and land resources. The Norwegian area frame survey of land cover and outfield land resources (AR18X18) is a response to this demand. AR18X18 provides unbiased land cover and land resource statistics and constitutes a baseline for studying changes in outfield land resources in Norway and a framework for a national land resource accounting system for the outfields. The area frame survey uses a systematic sampling technique with 0.9 km2 sample plots at 18 km intervals. A complete wall-to-wall land cover map of an entire plot surveyed is obtained in situ by a team of fieldworkers equipped with aerial photographs. The use of sample plots with extended coverage (0.9 km2) ensures that the survey also deals with local variation, thus strengthening the estimates well beyond simple point sampling. The article documents the methodology used in the survey, followed by a discussion of issues raised by the choice of methodology. These issues include the problem of calculating uncertainty and a confidence interval for the estimates, the focus on common rather than rare land cover categories, and the prospect of downscaling the results in order to obtain statistics for subnational regions.

Abstract

There is a need for monitoring methods for forest volume, biomass and carbon based on satellite remote sensing. In the present study we tested interferometric X-band SAR (InSAR) from the Tandem-X mission. The aim of the study was to describe how accurate volume and biomass could be estimated from InSAR height and test whether the relationships were curvilinear or not. The study area was a spruce dominated forest in southeast Norway. We selected 28 stands in which we established 192 circular sample plots of 250 m2, accurately positioned by a Differential Global Positioning System (dGPS). Plot level data on stem volume and aboveground biomass were derived from field inventory. Stem volume ranged fromzero to 596 m3/ha, and aboveground biomass up to 338 t/ha.We generated 2 Digital Surface Models (DSMs) fromInSAR processing of two co-registered, HH-polarized TanDEM-X image pairs – one ascending and one descending pair.We used a Digital TerrainModel (DTM) from airborne laser scanning (ALS) as a reference and derived a 10 m × 10 m Canopy Height Model (CHM), or InSAR height model. We assigned each plot to the nearest 10 m × 10 m InSAR height pixel. We applied a nonlinear, mixed model for the volume and biomass modeling, and from a full model we removed effects with a backward stepwise approach. InSAR heightwas proportional to volume and aboveground biomass, where a 1 m increase in InSAR height corresponded to a volume increase of 23 m3/ha and a biomass increase of 14 t/ha. Root Mean Square Error (RMSE) values were 43–44% at the plot level and 19–20% at the stand level.