Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Fire in the boreal forests emits substantial amounts of organically bound carbon (C) to the atmosphere and converts a fraction of the burnt organic matter into charcoal, which in turn is highly refractory and functions as a long-term stable C pool. It is well established that the boreal forest charcoal pool is sufficiently large to play a significant role in the global C cycle. However, there is a need for spatially representative estimates of how large proportions of the forest floor C pool are made up of charcoal across different plant communities in the boreal forest ecosystem. Thus, we have quantified the amounts of C separately in charcoal and the organic layers of the forest floor across fine spatial scales in a boreal forest landscape with a well-documented fire history. We found that the proportion of charcoal C made up an average of 1.2% of the total forest floor C, and the charcoal proportions showed a high small-scale spatial variability and were concentrated in the organic–mineral soil interface. Proportions of charcoal C decreased with increasing time since last fire. Deeper soils, denser soils, and local concave areas had the highest proportions of charcoal C, whereas historical fire frequencies and current differences in vegetation did not relate to the proportions of charcoal C.

To document

Abstract

The identification of individual tree logs along the wood procurement chain is a coveted goal within the forest industry. The tracing of logs from the sawmill back to the forest would support the legal and sustainable sourcing of wood, as well as increase the resource efficiency and value of harvested timber. In this work, using a dataset of thousands of Scots pine (Pinus sylvestris L.) log end images displaying varying perspectives, lighting, and aging effects, we develop and assess log identification methods based on deep convolutional neural networks. The estimated rank-1 accuracy of our final model on an independent test set of 99 logs is 84 and 91% when allowing for random rotations of the log ends and when keeping each log at approximately fixed orientation, respectively. We estimate the scaling of these methods up to a template pool size of 493 logs, which reveals a weak dependence of accuracy on pool size for logs at fixed orientation. The deep learning approach gives superior results to a classical local binary pattern method, and appears feasible in practice, assuming that pre-filtering of the log database can be leveraged depending on the use case and properties of the queried log image. We make our dataset publicly available.

To document

Abstract

This report is a documentation of the field data collection and sampling at Svalbard in 2022 within the project ArcticAlpineDecay. The sampling methods are described and for each object sampling was performed documentation is provided, incl. location, Askeladden ID, map coordinate, photo documentation and illustration of sampling. Compilation of the results from the project will be published in peer review journals and in a final report from the project.

Abstract

Field trials with Norway spruce seedlings from 84 full-sib families from a factorial cross in Opsahl Seed Orchard and 11 provenances were planted at eight sites between altitudes between 600 and 900 m in Oppland County in Norway. Measurements of tree heights and assessments of stem and branch defects were made at regular intervals until 34 years from seed. Data from measurements made in nursery trials and from artificial freezing trials were also available. The families from the seed orchard had on average 12 % better height growth than the provenances. For volume growth per hectare, measured in two of the trials 30 years after planting, the families had a superiority of more than 30 %. A large variation among families was present for height growth and additive genetic variation was the main genetic factor. For the maternal half-sib families, the ranking of families for height was stable after 15 years from seed, and the five best families selected for height at that age were at age 34 years 6 % taller and produced 13 % more volume per hectare compared with the mean of all families. Weak relationships were present between traits measured in the nursery trial, the freezing test and the field trials. Assessments were made of cone production at age 20 years after planting and showed variation among families for the frequency of trees with cones.

Abstract

Artificial freezing tests were performed on seedlings from Norway spruce families at the end of the first growing season. Similar tests were made on twigs collected from trees in a progeny test at the end of growing season nine. The 26 families in the early test were included in the short-term progeny test with 100 full-sib families from a 10 x 10 factorial cross. All families were also planted in seven field trials in Norway, Sweden and Finland, from which data on mortality, tree heights and stem damage at age 10 years are available. Significant difference was found among families for freezing test injuries on whole intact seedlings at the end of the first growing season and for lethal temperature of needles on detached twigs collected at the end of growing season nine. However, no relationships were found between the freezing test scores of families in the two types of tests or few between these scores and the traits measured in the short-term and field trials. The results show that frost hardiness testing of families at a young age, grown under artificial temperature and light conditions in nursery, is a weak predictor of their performance under natural conditions in field at older ages.

To document

Abstract

The dimensional stabilisation of wood using thermosetting resins relies on the resin uptake into the cell walls. This study tested if a conditioning step after the impregnation and before the final heat-curing enhances the cell wall uptake to improve dimensional stabilisation without increasing the chemical consumption. Small blocks of Scots pine sapwood were vacuum-impregnated with an aqueous melamine formaldehyde solution and conditioned at 33, 70, or 95 % RH for up to 1 week before drying and curing the blocks at 103 °C. However, the conditioning step decreased the cell wall bulking and the moisture exclusion effect compared to the immediate heat curing of the impregnated samples. Analyses of the resin-treated samples by scanning electron microscopy, IR spectroscopy and confocal Raman microspectroscopy provided evidence of wood hydrolysis and polycondensation of the resin within the cell lumen during the conditioning step. Hydrolysis and removal of wood constituents may have counterbalanced the cell wall bulking of the resin. Polycondensation of the resin in the lumen increased its molecule size, which could have hindered the cell wall diffusion of the resin.

To document

Abstract

Water-sorption studies and certain organic chemistry reactions require water removal from cellulosic samples. This is hindered by the strong interaction of cellulosic materials with water, and it remains uncertain if a completely anhydrous state can be reached under common drying conditions. Here, different drying conditions were applied to wood and cellulose, and the residual moisture contents were quantified either gravimetrically or by coulometric Karl-Fischer titration. Vacuum-drying at 103 °C and ≤ 1 mbar for at least 360 min decreased the moisture content to ≤ 0.04%. However, in automated sorption balances, drying at atmospheric pressure under dry air or nitrogen flow left some samples with more than 1% moisture content. The residual moisture content obtained under dry gas flow was temperature dependent. Increasing the temperature up to 55 °C decreased the residual moisture content and cooling resulted in a moisture re-uptake, presumably due to small quantities of water vapor in the surrounding atmosphere. These effects must be considered in fundamental studies on water interactions of cellulosic materials.