Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

Abstract

There is an increasing awareness of how the aesthetical performance of wood exposed outdoors changes over time and especially in the first few years after installation. Mould and blue stain fungi are biological agents that contribute to the weather grey colour on a wooden façade, and the blue stain fungi Aureobasidium pullulans is commonly identified as colonizer on coated and uncoated wood exposed outdoors. In this study 21 wood substrates (untreated, preservative treated and modified) were tested for their susceptibility to A. pullulans when incubated at three different temperatures (11, 16 and 22°C). Western red cedar and preservative treated wood had the lowest mould ratings at the end of the test period (84 days). Alder, ash, Norway spruce and Sitka spruce reached maximum rating already at day 28, and at day 84 also aspen, European larch, thermally modified pine, birch, acetylated pine and DMDHEU modified pine had reached maximum rating. Incubation temperature had a significant influence on the growth of A. pullulans throughout the test period for acetylated and DMDHEU modified samples – and generally the modified wood substrates were more sensitive to changes in temperature than the other tested substrates. Scots pine sapwood seemed to be less susceptible to A. pullulans in mono cultures, demonstrating low mould ratings throughout the test period. This contradicts to previous studies were Scots pine sapwood tended to have high susceptibility when using a mix of mould and blue stain fungi.

To document

Abstract

During post glacial colonization, loss of genetic diversity due to leading edge effects may be attenuated in forest trees because of their prolonged juvenile phase, allowing many migrants to reach the colonizing front before populations become reproductive. The northern range margins of temperate tree taxa in Europe are particularly suitable to study the genetic processes that follow colonization because they have been little affected by northern refugia. Here we examined how post glacial range dynamics have shaped the genetic structure of common ash (Fraxinus excelsior L.) in its northern range compared to its central range in Europe. We used four chloroplast and six nuclear microsatellites to screen 42 populations (1099 trees), half of which corresponded to newly sampled populations in the northern range and half of which represented reference populations from the central range obtained from previously studies. We found that northern range populations of common ash have the same chloroplast haplotypes as south-eastern European populations, suggesting that colonization of the northern range took place along a single migration route, a result confirmed by the structure at the nuclear microsatellites. Along this route, diversity strongly decreased only in the northern range, concomitantly with increasing population differentiation and complex population substructures, a pattern consistent with a leading edge colonization model. Our study highlights that while diversity is maintained in the central range of common ash due to broad colonizing fronts and high levels of gene flow, it profoundly decreases in the northern range, where colonization was unidirectional and probably involved repeated founder events and population fluctuations. Currently, common ash is threatened by ash dieback, and our results on northern populations will be valuable for developing gene conservation strategies.