Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Birch wood is a potential feedstock for biogas production in Northern Europe; however, the lignocellulosic matrix is recalcitrant preventing efficient conversion to methane. To improve digestibility, birch wood was thermally pre-treated using steam explosion at 220 °C for 10 min. The steam-exploded birch wood (SEBW) was co-digested with cow manure for a period of 120 days in continuously fed CSTRs where the microbial community adapted to the SEBW feedstock. Changes in the microbial community were tracked by stable carbon isotopes- and 16S r RNA analyses. The results showed that the adapted microbial culture could increase methane production up to 365 mL/g VS day, which is higher than previously reported methane production from pre-treated SEBW. This study also revealed that the microbial adaptation significantly increased the tolerance of the microbial community against the inhibitors furfural and HMF which were formed during pre-treatment of birch. The results of the microbial analysis indicated that the relative amount of cellulosic hydrolytic microorganisms (e.g. Actinobacteriota and Fibrobacterota) increased and replaced syntrophic acetate bacteria (e.g. Cloacimonadota, Dethiobacteraceae, and Syntrophomonadaceae) as a function of time. Moreover, the stable carbon isotope analysis indicated that the acetoclastic pathway became the main route for methane production after long-term adaptation. The shift in methane production pathway and change in microbial community shows that for anaerobic digestion of SEBW, the hydrolysis step is important. Although acetoclastic methanogens became dominant after 120 days, a potential route for methane production could also be a direct electron transfer among Sedimentibacter and methanogen archaea.

To document

Abstract

Access to safe drinking water and improved sanitation are important fundamental rights of people around the world to maintain good health. However, freshwater resources are threatened by many anthropogenic activities. Therefore, sustainable water supply is a challenge. Limited access to safe drinking water and unimproved sanitation facilities in some of its urban and rural areas are two of the major challenges for Bhutan in the 21st century. The water quality in the natural water systems in the cities and suburbs has significantly decreased while the urban infrastructure is being improved in Bhutan. Therefore, this study presents the state-of-the-art of water resources in Bhutan and the challenges for a sustainable water supply system. The current water status, drinking water sources and accessibility, factors affecting water quality degradation in urban and rural areas, water treatment methods, and implementation of sustainable drinking water accessibility with population growth in Bhutan are discussed in detail. Results of the review revealed that the water quality has deteriorated over the last decade and has a high challenge to provide safe water to some of the areas in Bhutan. Geographic changes, financial difficulties, urban expansion, and climate change are the reasons for the lack of safe drinking water accessibility for people in town areas. It is, therefore, recommended to have a comprehensive integrate water resources management (IWRM) approach while considering all stakeholders to find sustainable solutions for the challenges showcased in this paper.

To document

Abstract

Quantifying the similarities and differences in atmospheric nitrogen (N) deposition between different ecosystems is important to develop effective measures to reduce air pollution and maintain biodiversity. Here we show that the constitution of N deposition differed significantly between a grassland and a desert ecosystem in Northwestern China. Flux of bulk (wet plus part of dry deposition) and dry (gaseous NH3 and NO2) deposition were continuously monitored from 2018 to 2020. The grassland and desert sites had similar amount of total N deposition, being 7.29 and 6.33 kg N ha−1 yr−1, respectively. However, N deposition at the grassland was dominated by the bulk deposition (4.44 kg N ha−1 yr−1, 61% of the total N deposition), whereas that at the desert was dominated by dry deposition (4.20 kg N ha−1 yr−1, 66% of total deposition). The desert had greater ambient concentrations of NH3 (3.66 μg N m−3) and NO2 (1.52 μg N m−3) than the grassland (2.73 μg NH3–N m−3 and 0.72 μg NO2–N m−3). The amount of reduced N deposition (NH4+ and NH3) was around 3 times of that of oxidized N deposition (NO3− and NO2) in both ecosystems. The N deposition rates in both ecosystems have exceeded the critical load for the fragile ecosystems (5–10 kg N ha−1 yr−1), highlighting the importance of reducing N emission sources that are related with anthropogenic disturbance.

To document

Abstract

We conducted a study over four rice seasons to assess the effects of dairy manure application on water loss, nutrient leaching, and rice yield compared to chemical fertilization. Water input, soil water storage, water percolation, plant growth, and yield data were recorded under triplicate field lysimeters that received either chemical fertilizers or organic manure. The lysimeters received alternate wetting and drying irrigation (5-cm after 3 days (2018 Aman season), 6 days (2019 Boro and Aman seasons), and 9 days (2020 Boro season) of ponded water disappearance) in addition to rainfall (37.5, 33.1, 40.9, and 47.4 cm, respectively). Leachate and ponded water samples were analyzed for nitrogen (N) species (NH4+ - N and NO3− - N) and available phosphorus (P) content. Manure application increased soil water storage by 1.2–4.4 cm/m but did not affect percolation loss (44–64% of water input) in silt loam soil. The chemical fertilization had significantly higher leaching concentrations of nutrients (NO3− - N at 0.75–3.6 mg/L and P at 0.02–0.15 mg/L) in several leaching events in the last three seasons than the manure treatment (NO3− - N at 0.75–3.2 mg/L and P at 0–0.21 mg/L). Overall, the manure treatment reduced the leaching load of N and available P by 13% and 23.6%, respectively. The N and P concentrations in the topsoil were higher for the manure treatment. Manure application increased rice yield by 15% and water productivity by 0.07 kg/m3 by augmenting soil water availability during the drying cycles of alternate wetting and drying processes. In addition, recycling manure in soil significantly reduced its environmental pollution compared to other inappropriate disposal methods. However, research needs remain important to adjust manure management options.

To document

Abstract

This paper explores the utilisation of gauge rainfall and satellite-based precipitation product (SPP)-TRMM3B42, to develop IDF curves for the Fiji Islands. The study compares the application of remote sensing data against rain gauge (RG) data for two main stations, Nadi and Nausori (1991 to 2020). The accuracy of SPPs is evaluated through statistical analysis, employing continuous and categorical evaluation indices. The results indicate that TRMM3B42 tends to overestimate light precipitation and underestimate heavy rainfall in low elevations when compared to rain gauge data. Rainfall intensities derived from satellite data exhibit relative changes within ± 10%. This study also performs future projections. Two greenhouse emission scenarios, Shared Socioeconomic Pathways (SSP) 2–4.5 and 5–8.5, are employed for IDF curve projection. The analysis reveals that changes in IDF curves are more pronounced for short-duration rainfall as compared to high-duration rainfall. Additionally, higher emission scenarios demonstrate greater changes compared to lower scenarios. These findings emphasise the importance of accounting for climate change and future projections in designing urban infrastructure, particularly considering potential urban expansion and human settlements. This study helps in solving design problems associated with urban runoff control and disposal where knowing the rainfall intensities of different return periods with different durations is vital.

To document

Abstract

The energy in agricultural systems is two-fold: transformation and utilization. The assessment and proper use of energy in agricultural systems is important to achieve economic benefits and overall sustainability. Therefore, this study was conducted to evaluate the energy balance of crop and livestock production, net energy ratio (NER), and water use efficiency (WUE) of crops of a selected farm in Sri Lanka using the life cycle assessment (LCA) approach. In order to assess the diversification, 18 crops and 5 livestock types were used. The data were obtained from farm records, personal contacts, and previously published literature. Accordingly, the energy balance in crop production and livestock production was −316.87 GJ ha−1 Year−1 and 758.73 GJ Year−1, respectively. The energy related WUE of crop production was 31.35 MJ m−3. The total energy balance of the farm was 736.2 GJ Year−1. The results show a negative energy balance in crop production indicating an efficient production system, while a comparatively higher energy loss was shown from the livestock sector. The procedure followed in this study can be used to assess the energy balance of diversified agricultural systems, which is important for agricultural sustainability. This can be further developed to assess the carbon footprint in agricultural systems.

To document

Abstract

The introduction of cover crops into monoculture systems to improve soil health has been widely adopted worldwide. However, little is known about the environmental risks and application prospects of different cover crops in spring maize (Zea mays L.) monocultures proposed in the North China Plain. A pot experiment was conducted to evaluate the effects of different winter cover crops on subsequent maize yield, soil fertility, and environmental risks of nitrogen (N) loss, and a questionnaire survey was conducted to examine factors influencing farmers' willingness to adopt cover crops in the North China Plain. Based on the same fertilization regime during the maize growing period, four winter cover crop treatments were set up, including bare fallow, hairy vetch (Vicia villosa Roth.), February orchid (Orychophragmus violaceus), and winter oilseed rape (Brassica campestris L.). The results indicated that winter cover crops significantly increased subsequent maize yield and soil organic carbon, total N, and microbial biomass carbon and N compared with the bare fallow treatment. The incorporation of cover crops led to a negligible increase in nitrous oxide (N2O) emissions and had a very limited effect on ammonia (NH3) emissions. The incorporation of February orchid and winter oilseed rape decreased nitrate leaching compared with the hairy vetch treatment in the maize growing season. The N losses via N2O and NH3 emissions and N leaching accounted for 71%–84% of the N surplus. However, yield increase and environmental benefits were not the main positive factors for farmers to accept cover crops. Financial incentive was rated by 83.9% of farmers as an “extremely important” factor, followed by other costs, when considering winter cover cropping. These results indicate that the environmental benefits depend on the type of cover crop. Maintaining high levels of soil fertility and maize yield, providing sufficient subsidies, and encouraging large-area cultivation of cover crops are critical measures to promote winter cover cropping in the North China Plain.