Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

This report shows results from an experiment where it was investigated whether a powder of freeze-dried microalgae (Phaeodactylum tricornutum) had a biostimulating effect on the growth and content of nutrients and antioxidants in basil (Ocimum basilicum). The effect of the microalgae powder was tested as a supplement to either mineral fertilizer or a commercial organic fertilizer. We found no significant effect on the yield of applied microalgae powder, but there was a tendency for a higher yield with added microalgae powder for the treatment with organic fertiliser. This may be due to additional nitrogen supply with the microalgae powder. With mineral fertiliser, there was the opposite tendency, highest yield without microalgae powder. The only statistically significant effect of the microalgae powder was an increase in the concentration of boron for the treatment with organic fertiliser. This was probably an effect of a significant additional supply of boron with the microalgae biomass. There was a tendency for an increased concentration of copper with the addition of microalgae powder with both mineral and organic fertiliser, although the additional copper supply with the microalgae powder was small. With organic fertiliser, there was also a tendency towards increased phosphorus and potassium concentrations with the addition of microalgae powder. This could be a biostimulating effect as the additional phosphorus and potassium supply with the microalgae powder was small, but as mentioned, the effect was not statistically significant. We found no significant differences between the treatments for total antioxidant content.

To document

Abstract

Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for “cleaner fish” to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype–environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our ‘global’ sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.

To document

Abstract

Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non-model species, gene–environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome-wide SNPs obtained through a restriction site-associated DNA method (3RAD). A combination of differentiation-based genome-scan (outflank) and genotype–environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation-based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations.

To document

Abstract

The aim of this study was to evaluate whether sea lice grazing efficiency, behaviour, size variation and cataract development can be improved through selective breeding of lumpfish. A series of studies was conducted over a four-year period where distinctive lumpfish families were established initially from wild caught mature fish and latterly from established breeding lines. Four subsequent trials (called: Phase I-IV) with ten families of lumpfish (N = 480) with a mean (± SD) weight of 46.4 ± 9.4 g (Phase I), 54.8 ± 9.2 g (Phase II), 42.0 ± 7.4 g (Phase III) and 31.3 ± 2.4 g (Phase IV) were distributed among ten sea cages (5 × 5 × 5 m) during autumn 2018 to spring 2022, each stocked with 400–404 Atlantic salmon with an average initial mean (± SD) of 387 ± 9 g (Phase I), 621 ± 15 g (Phase II), 280 ± 16 g (Phase III) and 480 ± 66 g (Phase IV). All the ten cages were stocked with 48 lumpfish (12% stocking density). In all phases there was a large inter-family variation of lice grazing of lumpfish of both L. salmonis and C. elongatus. When sea lice grazing was scaled in relation to sea lice infestation numbers on the salmon the highest sea lice grazing activity was found in Phase IV and in particular in families sired from farmed parents. There was a general trend for mean start weights and standard deviations to decrease as the phases continued. A significant increase was found in frequency of behaviour associated with feeding on natural food sources and grazing sea lice from salmon during each subsequent phase. The increase in incidence of cataracts from start to end of each trial phase was significantly reduced from Phase I (16%) to Phase IV (2%). Overall, present findings showed that sea lice grazing of both L. salmonis and C. elongatus, size variation, cataract prevalence and behaviour types can be enhanced through selection and targeted breeding programs.

To document

Abstract

Wastewater (WW) has been identified as a major hotspot of microbial emerging contaminants (MECs), such as antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Currently used WW treatment methods cannot efficiently eliminate these pollutants, resulting in passive contamination of adjacent environments receiving undertreated discharge. More effective WW treatment strategies are therefore urgently required. In this study, newly developed and well-characterised semi-interpenetrating polymer network (semi-IPN) hydrogels derived from the valorisation of marine wastes (e.g., shrimp shells) were investigated for their ARG removal potential. The results indicated that multiple ARGs prevalent in WW, such as ermB, qrnS, sul1 and tetO, were removed by up to 100% after being treated by novel hydrogels. In terms of horizontal gene transfer-associated genetic elements, such as integron-1 intl1, transposons tnpA1 (IS4 group) and tnpA2 (IS6 group), substantial reduction approaching 99.9% was also achieved. Moreover, up to 97% of efflux pump-associated qacE∆1 conferring multidrug resistance (MR) was successfully attenuated. To conclude, the semi-INP hydrogels developed exhibited great potential for ARG mitigation towards strengthening WW decontamination, which provides a viable, cost-effective and environmentally friendly novel treatment approach.

To document

Abstract

The present work aims to study the influence of ammonium-quaternary monomers and chitosan, obtained from different sources, upon the effect of semi-interpenetrating polymer network (semi-IPN) hydrogels upon the removal of waterborne pathogens and bacteria from wastewater. To this end, the study was focused on using vinyl benzyl trimethylammonium chloride (VBTAC), a water-soluble monomer with known antibacterial properties, and mineral-enriched chitosan extracted from shrimp shells, to prepare the semi-IPNs. By using chitosan, which still contains the native minerals (mainly calcium carbonate), the study intends to justify that the stability and efficiency of the semi-IPN bactericidal devices can be modified and better improved. The new semi-IPNs were characterized for composition, thermal stability and morphology using well-known methods. Swelling degree (SD%) and the bactericidal effect assessed using molecular methods revealed that hydrogels made of chitosan derived from shrimp shell demonstrated the most competitive and promising potential for wastewater (WW) treatment.

Abstract

Cultivation of strawberries in greenhouses and polytunnels is increasing, and new sustainable growing media are needed to replace peat and coconut coir. This study investigated the effect of wood fiber and compost as growing media on hydroponically cultivated strawberries. Two experiments were conducted, where the everbearing cultivar ‘Murano’ was grown in mixtures of wood fiber and compost (Experiment 1) and the seasonal flowering cultivar ‘Malling Centenary’ was grown in mixtures of wood fiber and peat (Experiment 2). Additionally, in Experiment 2, the effect of adding start fertilizer was assessed. The yield potential of ‘Murano’ plants was maintained in all substrates compared to the coconut coir control. However, a mixture of 75% wood fiber and 25% compost produced the highest yield, suggesting that mixtures of nutritious materials with wood fiber may improve plant performance. The chemical composition of the berries was not affected by the substrate composition; however, berries from plants grown in the best performing blend had a lower firmness than those grown in coconut coir. ‘Malling Centenary’ plants produced higher yields in substrates enriched with start fertilizer. Generally, the productivity of ‘Malling Centenary’ plants was maintained in blends containing up to 75% of wood fiber mixture even without start fertilizer.

To document See dataset

Abstract

This report (D2.5) presents a qualitative and quantitative assessment for nutrients and energy regarding circular fertilizers and biogas production from waste resources. A transformation towards sustainable food production for the growing urban population requires improved circular urban nutrient management. Urban agriculture (UA), like any agricultural system, needs input of resources in terms of growth media, nutrients, and water. Resources that are often imported into cities, especially in the form of food, generate urban waste. Current environmental, social, and economic challenges of cities are seen as opportunities that can be derived locally, as this project demonstrates. The domestic organic waste and wastewater contains energy (thermal and chemical) and nutrients that could play a role in the urban circular economy if proper technology and management are applied. Urban organic waste contains relevant nutrients including nitrogen (N) and phosphorus (P), as well as organic matter, yet less than 5% of the global urban resources are presently recycled. One recycling approach is the composting of urban organic wastes, recovery of nutrients from source-separated urine and anaerobic digestate of blackwater, and biogas and biochar produced as sources of energy. At the NMBU showcase different technologies were assessed to demonstrate how to achieve sustainable and circular urban farming systems. Qualitative and quantitative information about organic fertilizers, making budgets for the nutrient contents of waste resources and organic fertilizer and comparing this with the nutrient needs of the plants in the relevant cultivation area, as shown in this report, can provide better fertilization and less loss to the environment. We need more information on the fertilizer value of waste resources and how these nutrients can be best utilised. Due to the increased interest, more information about health and environmental challenges by implementing circular UA should be obtained

To document

Abstract

The adults of the new species Zachvatkinibates svanhovdi A. Seniczak & S. Seniczak sp. nov. are described and illustrated from Norway, and this is the first finding of Zachvatkinibates Shaldybina, 1973 in Fennoscandia. This species is the most similar to Z. quadrivertex (Halbert, 1920), but differs from it mainly by the shape of notogastral setae, posterior tectum of notogaster and lack of postanal porose area Ap, which in Z. quadrivertex is present. In Z. svanhovdi, the prodorsal seta in is long, translamella is narrow, notogastral setae are short and distally pliable, notogastral porose areas are usually oval and of medium size, but Aa can be larger, especially in males. Dorsal crest on tarsus I is present. The cytochrome oxidase I (COI) barcodes (length: 658 bp) of five specimens of the new species are provided; the maximum variation within the species was 2.41% (p-dist). The morphology and ecology of the new species is compared with other Zachvatkinibates species. The knowledge on family Punctoribatidae in Fennoscandia is updated, and Mycobates carli (Schweizer, 1922) is first reported from Norway.