Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

This study investigates the combined impacts of climate change and agricultural conservation on the magnitude and uncertainty of nutrient loadings in the Maumee River Watershed, the second-largest watershed of the Laurentian Great Lakes. Two scenarios — baseline agricultural management and increased agricultural conservation — were assessed using an ensemble of five Soil and Water Assessment Tools driven by six climate models. The increased conservation scenario included raising conservation adoption rates from a baseline of existing conservation practices to feasible rates in the near future based on farmer surveys. This increased adoption of winter cover crops on 6%–10% to 60% of cultivated cropland; subsurface placement of phosphorus fertilizers on 35%–60% to 68% of cultivated cropland; and buffer strips intercepting runoff from 29%–34% to 50% of cultivated cropland. Increased conservation resulted in statistically significant (p ≤ 0.05) reductions in annual loads of total phosphorus (41%), dissolved reactive phosphorus (18%), and total nitrogen (14%) under the highest emission climate scenario (RCP 8.5). While nutrient loads decreased with increased conservation relative to baseline management for all watershed models, different conclusions on the true effectiveness of conservation under climate change may be drawn if only one watershed model was used.

To document

Abstract

Aims Root traits associated with resource foraging, including fine-root branching intensity, root hair, and mycorrhiza, may change in soils that vary in rock fragment content (RFC), while how these traits covary at the level of individual root branching order is largely unknown. Methods We subjected two xerophytic species, Artemisia vestita (subshrub) and Bauhinia brachycarpa (shrub), to increasing RFC gradients (0%, 25%, 50%, and 75%, v v− 1) in an arid environment and measured fine-root traits related to resource foraging. Results Root hair density and mycorrhizal colonization of both species decreased with increasing root order, but increased in third- or fourth-order roots at high RFCs (50% or 75%) compared to low RFCs. The two species tend to produce more root hairs than mycorrhizas under the high RFCs. For both species, root hair density and mycorrhizal colonization intensity were negatively correlated with root length and root diameter across root order and RFCs. Rockiness reduced root branching intensity in both species comparing with rock-free soil. At the same level of RFC, A. vestita had thicker roots and lower branching intensity than B. brachycarpa and tended to produce more root hairs. Conclusion Our results suggest the high RFC soil conditions stimulated greater foraging functions in higher root orders. We found evidence for a greater investment in root hairs and mycorrhizal symbioses as opposed to building an extensive root system in rocky soils. The two species studied, A. vestita and B. brachycarpa, took different approaches to foraging in the rocky soil through distinctive trait syndromes of fine-root components.

To document

Abstract

Climate-smart sustainable management of agricultural soil is critical to improve soil health, enhance food and water security, contribute to climate change mitigation and adaptation, biodiversity preservation, and improve human health and wellbeing. The European Joint Programme for Soil (EJP SOIL) started in 2020 with the aim to significantly improve soil management knowledge and create a sustainable and integrated European soil research system. EJP SOIL involves more than 350 scientists across 24 Countries and has been addressing multiple aspects associated with soil management across different European agroecosystems. This study summarizes the key findings of stakeholder consultations conducted at the national level across 20 countries with the aim to identify important barriers and challenges currently affecting soil knowledge but also assess opportunities to overcome these obstacles. Our findings demonstrate that there is significant room for improvement in terms of knowledge production, dissemination and adoption. Among the most important barriers identified by consulted stakeholders are technical, political, social and economic obstacles, which strongly limit the development and full exploitation of the outcomes of soil research. The main soil challenge across consulted member states remains to improve soil organic matter and peat soil conservation while soil water storage capacity is a key challenge in Southern Europe. Findings from this study clearly suggest that going forward climate-smart sustainable soil management will benefit from (1) increases in research funding, (2) the maintenance and valorisation of long-term (field) experiments, (3) the creation of knowledge sharing networks and interlinked national and European infrastructures, and (4) the development of regionally-tailored soil management strategies. All the above-mentioned interventions can contribute to the creation of healthy, resilient and sustainable soil ecosystems across Europe.