Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2010

To document

Abstract

Information retrieval from spatiotemporal data cubes is key to earth system sciences. Respective analyses need to consider two fundamental issues: First, natural phenomena fluctuate on different time scales. Second, these characteristic temporal patterns induce multiple geographical gradients. Here we propose an integrated approach of subsignal extraction and dimensionality reduction to extract geographical gradients on multiple time scales. The approach is exemplified using global remote sensing estimates of photosynthetic activity. A wide range of partly well interpretable gradients is retrieved. For instance, well known climate-induced anomalies in FAPAR over Africa and South America during the last severe ENSO event are identified. Also, the precise geographical patterns of the annual–seasonal cycle and its phasing are isolated. Other features lead to new questions on the underlying environmental dynamics. Our method can provide benchmarks for comparisons of data cubes, model runs, and thus be used as a basis for sophisticated model performance evaluations.

To document

Abstract

Climate change and rising temperatures have been observed to be related to the increase of forest insect damage in the boreal zone. The common pine sawfly (Diprion pini L.) (Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine forests. Defoliation by D. pini can cause severe growth loss and tree mortality in Scots pine (Pinus sylvestris L.) (Pinaceae). In this study, logistic LASSO regression, Random Forest (RF) and Most Similar Neighbor method (MSN) were investigated for predicting the defoliation level of individual Scots pines using the features derived from airborne laser scanning (ALS) data and aerial images. Classification accuracies from 83.7% (kappa 0.67) to 88.1% (kappa 0.76) were obtained depending on the method. The most accurate result was produced using RF with a combination of data from the two sensors, while the accuracies when using ALS and image features separately were 80.7% and 87.4%, respectively. Evidently, the combination of ALS and aerial images in detecting needle losses is capable of providing satisfactory estimates for individual trees.

Abstract

Four alternative airborne laser scanning (ALS) canopy penetration variables were compared for their suitability for mapping of gap fraction, leaf area index and disturbances in a Scots pine forest. The variables were based on either echo counting or intensity, and on either first or first and last echoes. ALS data and field-measured gap fraction and effective leaf area index (LAIe) were gathered before and after a severe insect defoliation by pine sawflies. LAIe is a commonly used form of leaf area index that is mathematically derived from gap fraction, and includes the areas of foliage, branches and trunks, and which is not corrected for the clumping of foliage. The ALS penetration variables were almost equally strongly related to field-measured gap fraction and LAIe. The estimated slopes in the LAIe models varied from 0.94 to 2.71, and had coefficient of determination R 2 values of 0.92–0.94. They were strongly correlated to each other (R 2 values of 0.95–0.98) and agreed fairly well for temporal changes of LAIe during the summer and the insect defoliation (R 2 values of 0.82–0.95). Counting of first and last echoes produced penetration rates close to the gap fraction, and this penetration variable was able to penetrate tree crowns. Ground-only echoes represented mostly between-tree gaps, and canopy-first-ground-last pulses represented mostly within-canopy gaps. However, the penetration variables based on first and last echoes suffered from the problem that a second echo might be impaired both in low and in tall canopies. In low canopies, two adjacent echoes from the same pulse would be too close in time to be separated by the sensor, while in tall canopies the pulse might apparently be fragmented down through the canopy. The intensity-based penetration variables needed to be supplemented with reflectance values, or at least the ratio between reflectance of the canopy and the ground, and this ratio was estimated from the data. The study demonstrated that one might be able to distinguish between disturbance types, e.g. between defoliation and cutting, by comparing alternative ALS penetration variables. Insect defoliation was dominated by an increase in within-canopy gaps and, correspondingly, the fraction of partly penetrating canopy-first-ground-last pulses. Tree removals from cutting were dominated by increases in between-tree gaps and the corresponding fraction of ground-only pulses.

To document

Abstract

The aim of this study is to use airborne laser scanning (ALS) data to simulate synthetic aperture radar interferometry (InSAR) elevation data [digital elevation model (DEM)] from the spatial distribution of scatterers. A Shuttle Radar Topography Mission X-band DEM data set and an ALS data set from a spruce-dominated forest area are used. A 3-D grid of voxels is made from the spatial distribution of ALS first echoes. The slant angle penetration rate of the SAR microwaves (P-SAR) is simulated to be a function of the vertical ALS penetration rate (P-ALS), i.e., P-SAR = P-ALS(4). The InSAR DEM and heights above the ground are fairly well reproduced by the simulator. A total least squares regression model between the simulated and measured InSAR DEMs has an R-2 value of 0.99 and a slope of 1 : 1. By subtracting the ALS-based terrain heights (digital terrain model), we obtained InSAR heights, which were reproduced with an R-2 value of 0.78, a slope of 0.96, and a root-mean-square error of 2.3 m. With the simulator, it was demonstrated how a disturbance event would affect the InSAR height. Unfortunately, the relationship was curvilinear and concave, which means that the method is not very sensitive to weak disturbances. This might be partly overcome by using a more vertical incidence angle of the SAR microwaves. The simulator might be used for validation or ground truthing of the InSAR data, as well as gaining understanding of how vegetation changes affect the InSAR data.

To document

Abstract

The suitability of interferometric X-band radar for forest monitoring was investigated. Working in a spruce-dominated forest in southeast Norway, top height, mean height, stand density, stem volume, and biomass were related to space shuttle interferometric height above ground. A ground truth dataset was produced for each radar data pixel in the study area by combining a field inventory and automatic tree detection with airborne laser scanning data. Pixels were aggregated to forest stands. Interferometric height was strongly related to all of the five forest variables, and most strongly to top height with R-2 = 0.71 and RMSE = 13% at the pixel level and R-2 = 0.82 and RMSE = 5.6% at the stand level. Interferometric height was linearly related to stem volume and biomass up to 400 m(3)/ha and 200 t/ha, respectively, and RMSE was approximately 19% for both variables. These errors contain error components caused by the 3.5-year time lag between the radar acquisition and the laser scanning. It is concluded that interferometric X-band radar has potential for use in forest monitoring.

Abstract

The airborne laser scanning (ALS) penetration rate, i.e. the ratio of ground echoes to total echoes, is a proxy for gap fraction. Hence, ALS has a potential for monitoring forest properties that are related to gap fraction, such as leaf area index, canopy cover and disturbance. Furthermore, two gap types may be distinguished: While a pulse that only produces a ground echo most likely hit a large, between-tree gap, a pulse that produces a ground echo as the last of several returns most likely hit smaller, within-canopy gaps. This may be utilized to distinguish between disturbance types such as defoliation and tree removal. However, the ALS penetration rate needs to be calibrated with gap fraction measurements in the field, because it is influenced by technical properties of the acquisition. The aim of this study was to quantify the magnitude of this influence, by comparing repeated acquisitions with different technical specifications. We had at hand 12 ALS acquisitions which could be combined into six pairs, from four spruce and pine dominated forests in Norway. We established 20x20 m grids, and for each grid cell we extracted three penetration variables: first echo penetration, last-of-many echo penetration, and total (i.e., first and last echo). We log-transformed the penetration variables (P1 and P2) from two laser acquisitions, and fitted the no-intercept, linear model log(P1) = log(P2), applying total least squares regression analysis. In a majority of the cases, the penetration variables were very similar, i.e. they deviated by <10%. For the first echo penetration the slopes varied from 0.87 to 1.07 and the R2 values ranged between 0.91 and 0.99. For the last-of-many echo penetration, there was generally weaker correspondence with slopes varying from 0.78 to 1.02, and R2 values ranging from 0.60 to 0.94. Finally, for the total penetration there was again stronger agreement with slopes in the range 0.83-1.03 and R2 values from 0.88 to 0.99. In conclusion, it seems that the penetration ability of different ALS scans in many cases are very similar, and further research may reveal ranges of standardized settings for which field inventory can be redundant.

Abstract

In European forests, standing stocks are currently higher than ever during the last decades, in part due to reduced logging or the abandonment of agricultural land. However, data from intensive monitoring plots reveal an increased growth even without direct human intervention.We used a set of 363 plots from 16 European countries to investigate the influence of environmental factors on forest growth: nitrogen, sulphur and acid deposition, temperature, precipitation and drought, for Norway spruce, Scots pine, common beech and European as well as sessile oak.We used existing information on site productivity, stand age and stand density to estimate expected growth. Relative tree growth, i.e., the ratio between actual growth within a five-year period and expected growth, was then related to environmental factors in a stepwise multiple regression.The results consistently indicate a fertilizing effect from nitrogen deposition, with roughly one percent increase in site productivity per kg of nitrogen deposition per ha and year, or 20 kg C fixation per kg N deposition. This was most pronounced for plots having soil C/N ratios above 25. We also found a positive albeit less clear relationship between relative growth and summer temperatures.From the study, we cannot conclude on any detrimental effects on growth from sulphur and acid deposition or from drought periods. A very recent study from the U.S., comprising 4800 plots and 24 tree species, confirms our results. However, we also show that the magnitude of N deposition effects on global forest C balance is currently a highly controversial matter, and comment on this debate. http://www.cef-cfr.ca/uploads/Colloque/Programme10_5.pdf

Abstract

Understanding the feedback between terrestrial biosphere processes and meteorological drivers is crucial to ecosystem research as well as management. For example, remote sensing of the activity of vegetation in relation to environmental conditions provides an invaluable basis for investigating the spatiotemporal dynamics and patterns of variability. We investigate the Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) using SeaWiFS satellite observations from 1998 to 2005 and ancillary meteorological variables from the CRU-PIK dataset. To what extent do precipitation and temperature dominate the terrestrial photosynthetic activity on monthly to interannual time scales? A spectral decomposition using Singular System Analysis leads to a global ‘classification’ of the terrestrial biosphere according to prevalent time-scale dependent dynamics of fAPAR and its relation to the meteorology. A complexity analysis and a combined subsignal extraction and dimensionality reduction reveals a series of dominant geographical gradients, separately for different time scales. Here, we differentiate between three time scales: on short time scales (compared to the annual cycle), variations in fAPAR coincide with corresponding precipitation dynamics. At the annual scale, which explains around 50% of the fAPAR variability as a global average, patterns largely resemble the biomes of the world as mapped by biogeographic methods.At longer time scales, spatially coherent patterns emerge which are induced by precipitation and temperature fluctuations combined. However, we can also identify regions where the variability of fAPAR on specific time scales cannot be traced back to climate and is apparently shaped by other geoecological or anthropogenic drivers. http://uregina.ca/prairies/assets/Prairie_Summit_Final_Program.pdf

Abstract

Determining the feedbacks between terrestrial biosphere processes and the meteorological drivers (here precipitation and temperature) is crucial to ecosystem research. In this context, the continuous monitoring of the earth surface provides an invaluable basis for investigating the spatiotemporal dynamics in the activity of vegetation in relation to environmental conditions. Here, we seek to identify which patterns of variability in the meteorological drivers dominate the terrestrial photosynthetic activity from monthly to interannual time scales (resp. fluctuation frequencies). We investigate the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) using SeaWiFS observations from 1998 to 2005 and ancillary meteorological variables. A spectralanalysis leads to a global `classification` of the terrestrial biosphere according to prevalent scale dependent dynamics of fAPAR and its relation to the meteorology. A combined subsignal extraction and dimensionality reduction reveals a series of dominant geographical gradients on specific time scales. E.g. we uncover spatially coherent patterns at low frequencies and show where these are induced by precipitation or temperature fluctuations. We also show where high frequency variations (relative to the annual cycle) in fAPAR coincide with corresponding precipitation dynamics. However, we can also identify regions where the variability of fAPAR on specific time scales cannot be traced back to climate and is apparently shaped by other geoecological or anthropogenic drivers. http://www.terrabites.net/fileadmin/user_upload/terrabites/PDFs/Programme_Book_TERRABITES.pdf