Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2013

To document

Abstract

The quality of surface water and groundwater is closely related to flow paths in the vadose zone. Therefore, dye tracer studies are often carried out to visualise flow patterns in soils. These experiments provide images of stained soil profiles and their evaluation demands knowledge in hydrology as well as in image analysis and statistics. The classical analysis consists of image classification in stained and non-stained parts and calculation of the dye coverage (i.e. the proportion of staining). The variation of this quantity with depth is interpreted to identify dominant flow types. While some feature extraction from images of dye-stained profiles is necessary, restricting the analysis to the dye coverage alone might miss important information. In our study we propose to use several index functions to extract different (ideally complementary) features. We associate each image row with a feature vector (i.e. a certain number of image function values) and use these features to cluster the image rows to identify similar image areas. Because images of stained profiles might have different reasonable clusterings, we calculate multiple consensus clusterings. Experts can explore these different solutions and base their interpretation of predominant flow type on quantitative (objective) criteria.

To document

Abstract

Fine roots contribute to net primary production in forests, but knowledge of fine root longevity and turnover is still incomplete and limited to few tree species. In this study, we used minirhizotrons to compare fine root biomass, longevity and turnover of Pinus sylvestris L., Betula pendula Roth and Picea abies (L) Karst. in southern Sweden. Minirhizotron tubes were installed in 2006 and root images were taken in 2007–2010. Soil cores were used to estimate fine root biomass. Soil samples were taken from the humus layer and from 0 to 10 cm, 10 to 20 cm and 20 to 30 cm depth in the mineral soil. Only images from the humus layer and the upper 10 cm of mineral soil were included in root analysis. Spruce has a higher aboveground production than pine and birch in southern Sweden and this was reflected in larger fine root biomass as well as higher fine root biomass production. The annual tree fine root biomass production (humus and 0–30 cm in mineral soil) was 73, 78 and 284 g m−2 in pine, birch and spruce stands, respectively. Thicker fine roots tended to live longer. The majority of the fine roots were thinner than 0.5 mm in diameter, with a turnover rate (KM) of 0.4 year−1. When comparing all fine roots, i.e. all roots 0–2 mm, pine had the highest longevity, 1120 days, compared with 900 days for spruce and 922 days for birch (KM).

To document

Abstract

When calculating the Bandt and Pompe ordinal pattern distribution from given time series at depth D, some of the D! patterns might not appear. This could be a pure finite size effect (missing patterns) or due to dynamical properties of the observed system (forbidden patterns). For pure noise, no forbidden patterns occur, contrary to deterministic chaotic maps. We investigate long time series of river runoff for missing patterns and calculate two global properties of their pattern distributions: the Permutation Entropy and the Permutation Statistical Complexity. This is compared to purely stochastic but long-range correlated processes, the k-noise (noise with power spectrum f−k), where k is a parameter determining the strength of the correlations. Although these processes closely resemble runoff series in their correlation behavior, the ordinal pattern statistics reveals qualitative differences, which can be phrased in terms of missing patterns behavior or the temporal asymmetry of the observed series. For the latter, an index is developed in the paper, which may be used to quantify the asymmetry of natural processes as opposed to artificially generated data.

To document

Abstract

We provide a demonstration of the new tomographic profiling (TP) technique, here applied to forestry for the first time. The portable ground-based synthetic aperture radar (GB-SAR) system was used to capture profiles of the vertical polarimetric backscattering patterns through a 7 m tall stand of Norway spruce trees. The TP scheme collects data as for normal SAR imaging, but with the antennae aligned in the along-track direction. Adaptive post-processing meant that each TP scan simultaneously captured along-track image transects over the incidence angle range 0°–60°. An important feature of the derived image products is that incidence angle is constant at every point within an image. The measured HH–VV height backscatter profiles were very similar, whilst the cross-/co-polarization ratio showed very little variation with height through the stand. Backscattering profiles showed closest agreement with the branch biomass distribution through the canopy, rather than with trunk or branch + trunk biomasses. Equivalent interferometric tree heights were estimated from the centre of mass of the backscatter-height distribution, which displayed increasing height with increasing incidence angle. There was no significant vertical separation between the cross- and co-polarization returns.