Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

Til dokument

Sammendrag

New mortality models were developed for the purpose of improving long-term growth and yield simulations in Finland, Norway, and Sweden and were based on permanent national forest inventory plots from Sweden and Norway. Mortality was modelled in two steps. The first model predicts the probability of survival, while the second model predicts the proportion of basal area in surviving trees for plots where mortality has occurred. In both models, the logistic function was used. The models incorporate the variation in prediction period length and in plot size. Validation of both models indicated unbiased mortality rates with respect to various stand characteristics such as stand density, average tree diameter, stand age, and the proportion of different tree species, Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), and broadleaves. When testing against an independent dataset of unmanaged spruce-dominated stands in Finland, the models provided unbiased prediction with respect to stand age.

Til dokument

Sammendrag

Sunlight absorbed at the Earth’s surface is re-emitted as longwave radiation. Increasing atmospheric concentrations of CO2 and other greenhouse gases trap an increasing fraction of such heat, leading to global climate change. Here we show that when a chlorophyll (Chl)-deficient soybean mutant is grown in the field, the fraction of solar-irradiance which is reflected, rather than absorbed, is consistently higher than in commercial varieties. But, while the effect on radiative forcing during the crop cycle at the scale of the individual experimental plot was found to be large (−4.1± 0.6 W m−2 ), global substitution of the current varieties with this genotype would cause a small increase in global surface albedo, resulting in a global shortwave radiative forcing of −0.003 W m−2 , corresponding to 4.4 Gt CO2eq. At present, this offsetting effect would come at the expense of reductions to yields, probably associated with different dynamic of photosynthetic response in the Chl-deficient mutant. The idea of reducing surface-driven radiative forcing by means of Chl-deficient crops therefore requires that novel high-yielding and high-albedo crops are made available soon.

Til dokument

Sammendrag

In the Nordic countries Finland, Norway and Sweden, the most common regeneration method is planting after clearcutting and, often, mechanical site preparation (MSP). The main focus of this study is to review quantitative effects that have been reported for the five main MSP methods in terms of survival and growth of manually planted coniferous seedlings of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) in clearcuts in these three countries. Meta analyses are used to compare the effects of MSP methods to control areas where there was no MSP and identify any relationships with temperature sum and number of years after planting. In addition, the area of disturbed soil surface and the emergence of naturally regenerated seedlings are evaluated. The MSP methods considered are patch scarification, disc trenching, mounding, soil inversion and ploughing. Studies performed at sites with predominately mineral soils (with an organic topsoil no thicker than 0.30 m), in boreal, nemo-boreal and nemoral vegetation zones in the three Fenno-Scandinavian countries are included in the review. Data from 26 experimental and five survey studies in total were compiled and evaluated. The results show that survival rates of planted conifers at sites where seedlings are not strongly affected by pine weevil (Hylobius abietis L.) are generally 80–90% after MSP, and 15–20 percent units higher than after planting in non-prepared sites. The experimental data indicated that soil inversion and potentially ploughing (few studies) give marginally greater rates than the other methods in this respect. The effects of MSP on survival seem to be independent of the temperature sum. Below 800 degree days, however, the reported survival rates are more variable. MSP generally results in trees 10–25% taller 10–15 years after planting compared to no MSP. The strength of the growth effect appears to be inversely related to the temperature sum. The compiled data may assist in the design, evaluation and comparison of possible regeneration chains, i.e. analyses of the efficiency and cost-effectiveness of multiple combinations of reforestation measures.

Til dokument

Sammendrag

We explored the inter-individual variability in bud-burst and its potential drivers, in homogeneous mature stands of temperate deciduous trees. Phenological observations of leaves and wood formation were performed weekly from summer 2017 to summer 2018 for pedunculate oak, European beech and silver birch in Belgium. The variability of bud-burst was correlated to previous’ year autumn phenology (i.e. the onset of leaf senescence and the cessation of wood formation) and tree size but with important differences among species. In fact, variability of bud-burst was primarily related to onset of leaf senescence, cessation of wood formation and tree height for oak, beech and birch, respectively. The inter-individual variability of onset of leaf senescence was not related to the tree characteristics considered and was much larger than the inter-individual variability in bud-burst. Multi-species multivariate models could explain up to 66% of the bud-burst variability. These findings represent an important advance in our fundamental understanding and modelling of phenology and tree functioning of deciduous tree species.

Til dokument

Sammendrag

The rapidly expanding field of machine learning (ML) provides many methodological opportunities which match very well with the needs and challenges of hydrological research. Due to extended measurement networks, more frequent automatic measurements of hydrological variables, and not the least increasing use of remote sensing products, the era of big data surely has arrived in hydrology. Process-based models are usually developed for certain spatiotemporal scales, not fitting easily to the scope of the new datasets. Automatic methods that learn patterns and generalizations have been demonstrated to be superior in many applications. The chapter provides an overview of some of the most important machine learning algorithms which have been used in the hydrological literature. It will be shown that there is no single best method among them, but instead a spectrum of methods should be utilized, from highly flexible ones to more parsimonious learning methods, depending on the specific hydrological application, research question, and data availability. Most machine learning techniques require a calibration and a validation dataset for training. As these data are usually correlated in time and space, the problem of bias-variance tradeoff arises will be discussed as a simple example. The presentation of ML algorithms, roughly following chronological order, is discussed starting with artificial neural networks through support vector machines to gradient boosting machines. As data streams increase, these and other machine learning techniques will play an ever more important role in hydrology.

Til dokument

Sammendrag

Changing environmental conditions may substantially interact with site quality and forest stand characteristics, and impact forest growth and carbon sequestration. Understanding the impact of the various drivers of forest growth is therefore critical to predict how forest ecosystems can respond to climate change. We conducted a continental-scale analysis of recent (1995–2010) forest volume increment data (ΔVol, m3 ha−1 yr−1), obtained from ca. 100,000 coniferous and broadleaved trees in 442 even-aged, single-species stands across 23 European countries. We used multivariate statistical approaches, such as mixed effects models and structural equation modelling to investigate how European forest growth respond to changes in 11 predictors, including stand characteristics, climate conditions, air and site quality, as well as their interactions. We found that, despite the large environmental gradients encompassed by the forests examined, stand density and age were key drivers of forest growth. We further detected a positive, in some cases non-linear effect of N deposition, most pronounced for beech forests, with a tipping point at ca. 30 kg N ha−1 yr−1. With the exception of a consistent temperature signal on Norway spruce, climate-related predictors and ground-level ozone showed much less generalized relationships with ΔVol. Our results show that, together with the driving forces exerted by stand density and age, N deposition is at least as important as climate to modulate forest growth at continental scale in Europe, with a potential negative effect at sites with high N deposition.