Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

Red fescue (RF, Festuca rubra L.) is used on golf putting greens in the Nordic region due to its high disease resistance and low requirements for nitrogen (N) and water, but low density and growth rate makes RF susceptible to annual bluegrass (AB, Poa annua L.) invasion. Putting greens seeded with RF + bentgrass (Agrostis sp.) may be more competitive with AB but also have different playing characteristics. Our objective was to compare RF, RF + colonial bentgrass (CB, Agrostis capillaris L.), and RF + velvet bentgrass (VB, Agrostis canina L.) putting greens at two mowing heights (4.0 or 5.5 mm), three N rates (5, 10, or 15 g N m−2 yr−1), and three phosphorus (P)–arbuscular mycorrhizal fungi treatments (0 and 1.8 g P m−2yr−1 without inoculation and 0 g P m−2yr−1 with inoculation). The four-factorial experiment was conducted in 2011 and 2012 at Landvik, Norway. Red fescue provided lower visual quality and density and less competition against AB than RF + bentgrass combinations. Increasing the N rate from 5 to 15 g N m−2yr−1 increased the proportion of bentgrass tillers from 53 to 64% in RF + CB and from 86 to 92% in RF + VB. Surface hardness increased in the order RF + VB < RF + CB < RF turfs. Ballroll distance decreased with increasing N rate and was longer with RF and RF + VB than with RF + CB. The main effects of N and mowing height on AB invasion were not significant, but lower mowing increased AB competition in RF. Mycorrhiza colonization of roots was not significantly affected by any practice, and neither P nor arbuscular mycorrhizal fungi influenced the competition against AB.

To document

Abstract

Invasive nitrogen-fixing plants drive vegetation dynamics and may cause irreversible changes in nutrient-limited ecosystems through increased soil resources. We studied how soil conditioning by the invasive alien Lupinus nootkatensis affected the seedling growth of co-occurring native plant species in coastal dunes, and whether responses to lupin-conditioned soil could be explained by fertilisation effects interacting with specific ecological strategies of the native dune species. Seedling performance of dune species was compared in a greenhouse experiment using field-collected soil from within or outside coastal lupin stands. In associated experiments, we quantified the response to nutrient supply of each species and tested how addition of specific nutrients affected growth of the native grass Festuca arundinacea in control and lupin-conditioned soil. We found that lupin-conditioned soil increased seedling biomass in 30 out of 32 native species; the conditioned soil also had a positive effect on seedling biomass of the invasive lupin itself. Increased phosphorus mobilisation by lupins was the major factor driving these positive seedling responses, based both on growth responses to addition of specific elements and analyses of plant available soil nutrients. There were large differences in growth responses to lupin-conditioned soil among species, but they were unrelated to selected autecological indicators or plant strategies. We conclude that Lupinus nootkatensis removes the phosphorus limitation for growth of native plants in coastal dunes, and that it increases cycling of other nutrients, promoting the growth of its own seedlings and a wide range of dune species. Finally, our study indicates that there are no negative soil legacies that prevent re-establishment of native plant species after removal of lupins.