Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Abstract
No abstract has been registered
Abstract
In recent years, slatted floors made of materials like fiber composite and plastic have been introduced in animal housing systems. These modern floor types are claimed to have low heat conductivity and hence be “better” for the sheep than expanded metal, but the actual preference in sheep has not yet been tested. The aim of this study was to investigate the preference of ewes for different floor materials at low ambient temperatures. The experiment was performed in a non-insulated building and the indoor air temperature varied from -11.8 to + 3 °C. Each experimental pen measured 3.0 x 2.0 m (total 6.0 m2) and were divided into two equal sections (A and B). A total of 30 non-pregnant ewes were sheared and allocated to one of ten stable groups with three animals per group. Five different floor types – expanded metal, slatted floor made of fiber composite, slatted floor made of plastic, solid floor made of wood and solid floor consisting of a rubber mat, were installed in section A and B in the experimental pens. Groups were habituated to all floor material combinations and systematically rotated through the ten pens. Behaviors were scored from 20 hour video recordings using instantaneous sampling at 10 minute intervals. In addition, heat conductivity properties of the five different floor materials were tested. On days with low temperatures, the ewes were standing or walking more, resting less, eating or drinking more and resting more in physical contact than on days with higher temperatures. When given the choice, ewes showed clear preferences for standing/walking and resting on solid floor materials than on slatted floors. This is consistent with earlier preference tests on sheared sheep. Ewes did not seem to show a clear preference for one slatted floor material over another for resting. The proportion of time spent standing/walking in the pen was steadily reduced as air temperature in the barn increased. The present experiment suggests that none of the floor combinations had thermal properties that adversely affect resting and other general behaviors of the animals. The heat conductivity properties were similar among the slatted floors. In conclusion, the claimed favorable thermal properties of plastic slatted floors and fiber composite were not confirmed. There must be other properties of the floor than heat conductivity that influences the preference in ewes.
Abstract
In recent years, slatted floors made of materials like fiber composite and plastic have been introduced in animal housing systems. These modern floor types are claimed to have low heat conductivity and hence be “better” for the sheep than expanded metal, but the actual preference in sheep has not yet been tested. The aim of this study was to investigate the preference of ewes for different floor materials at low ambient temperatures. The experiment was performed in a non-insulated building and the indoor air temperature varied from -11.8 to + 3 °C. Each experimental pen measured 3.0 x 2.0 m (total 6.0 m2) and were divided into two equal sections (A and B). A total of 30 non-pregnant ewes were sheared and allocated to one of ten stable groups with three animals per group. Five different floor types – expanded metal, slatted floor made of fiber composite, slatted floor made of plastic, solid floor made of wood and solid floor consisting of a rubber mat, were installed in section A and B in the experimental pens. Groups were habituated to all floor material combinations and systematically rotated through the ten pens. Behaviors were scored from 20 hour video recordings using instantaneous sampling at 10 minute intervals. In addition, heat conductivity properties of the five different floor materials were tested. On days with low temperatures, the ewes were standing or walking more, resting less, eating or drinking more and resting more in physical contact than on days with higher temperatures. When given the choice, ewes showed clear preferences for standing/walking and resting on solid floor materials than on slatted floors. This is consistent with earlier preference tests on sheared sheep. Ewes did not seem to show a clear preference for one slatted floor material over another for resting. The proportion of time spent standing/walking in the pen was steadily reduced as air temperature in the barn increased. The present experiment suggests that none of the floor combinations had thermal properties that adversely affect resting and other general behaviors of the animals. The heat conductivity properties were similar among the slatted floors. In conclusion, the claimed favorable thermal properties of plastic slatted floors and fiber composite were not confirmed. There must be other properties of the floor than heat conductivity that influences the preference in ewes.
Authors
Håvard Steinshamn Karl-Christian Mahnert Inga Marie Aasen Berit Marie Blomstrand Sokratis Ptochos Spiridoula Athanasiadou Ian Woolsey Heidi L Enemark Kristin SørheimAbstract
No abstract has been registered
Authors
Håvard SteinshamnAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Berit Marie Blomstrand Sokratis Ptochos Heidi L Enemark Stig Milan Thamsborg Inga Marie Aasen Håvard Steinshamn Spiridoula AthanasiadouAbstract
No abstract has been registered
Authors
Håvard SteinshamnAbstract
No abstract has been registered
Authors
Silje Elde Ingrid Kvalvik Bjørg Helen Nøstvold Rune Rødbotten Sigridur Dalmannsdottir Hilde Halland Eivind Uleberg Ólafur Reykdal Jón Árnason Páll Gunnar Pálsson Rakel Halldórsdóttir Óli Þór Hilmarsson Gunnar Þórðarson Þóra Valsdóttir Rebekka Knudsen David Natcher Daria SidorovaAbstract
The aim of the "Arctic as a food producing region" - project is to assess the potential for increased production and added value of food from the Arctic region, with the overarching aim of improving economic and social conditions of Arctic communities. This report is the output from the first phase of the project, providing a description of the main food production and examples of conditions for food production in the Arctic areas of the countries involved. This will form the basis for further analysis of opportunities, driving forces and barriers for further development of arctic food production, in the next phase of the project. The project has participation from Canada, Denmark, Greenland, Iceland, Norway and Russia, and is endorsed by the Arctic Council Sustainable Development Working Group (SDWG).
Authors
Ievina Sturite Arta Kronberga Vija Strazdina Aina Kokare Mauritz Åssveen Anne Kari Bergjord Olsen Vita Sterna Evita StraumiteAbstract
Multilocation testing remains the main tool for understanding varietal responses to the environment. Here, Latvian and Norwegian hull-less and hulled barley varieties were tested in field experiments in Latvia and Norway in order to assess the varieties adaptability across environments (sites). Two Latvian (cv Irbe and cv Kornelija) and one Norwegian hull-less barley variety (cv Pihl) were tested along with one Latvian (cv Rubiola) and one Norwegian hulled barley variety (cv Tyra) under conventional and organic management systems. The grain yield, together with physical and chemical grain parameters were compared, and variety yield and protein stability detemined. Overall, grain yield of hull-less barley varieties was significantly lower than for hulled barley varieties regardless of climatic conditions and management system. However, in the organic farming systems this difference between barley types was less pronounced. The hull-less barley varieties cv Pihl and cv Irbe, along with both hulled varieties, had good yield stability across environments and were well adapted to both cropping systems. Hull-less barley varieties tended to contain more protein and β -glucans than hulled barley varieties. Despite being bred for local conditions in Norway and Latvia, our study shows that all the varieties used may be successfully transferred across countries.