Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Riccardo Favaro Miroslav Berka Martin Pettersson Gunda Thöming Carla C. M. Arce Maria L. Inácio Ted C. J. Turlings Jorge M. S. Faria Thomas Jung Damien Bazin Alberto Pozzebon Sergio Angeli Luca CappellinAbstract
Invasive pests and plant pathogens pose a significant threat to ecosystems and economies worldwide, prompting the need of anticipatory strategies. Preventing their introduction by detection at the ports of entry has been proven extremely difficult. This review explores the potential of biogenic volatile detection as a reliable preventive solution. It underscores the importance of early detection and rapid response as integral components of effective invasive pest management, and it discusses the limitations of current control measures and the increasing globalization that facilitates the spread of pests and pathogens. Through a synthesis of existing literature, this review analyzes the Volatile Organic Compound (VOC) emissions in five invasive model species: three insects, Halyomorpha halys, Spodoptera frugiperda, Helicoverpa armigera, a nematode, Bursaphelenchus xylophilus, and an oomycete, Phytophthora ramorum. The review focuses on the specific volatiles, released by both the invasive organisms and the infested host plants. If available, the volatiles emitted from similar species were considered for comparison. Ultimately, this review highlights specific pest volatile and shared Herbivore Induced Plant Volatiles (HIPVs) as a reliable and innovative solution in pest detection. If possible, candidate compounds are provided, whilst the lack of some emphasizes the urge of expanding the information available.
Authors
Fernanda Leiva Florent Abdelghafour Muath K Alsheikh Nina Elisabeth Nagy Jahn Davik Aakash ChawadeAbstract
Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces “ScabyNet”, an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.
Abstract
No abstract has been registered
Authors
Martin S. Mullett Anna R. Harris Bruno Scanu Kris Van Poucke Jared LeBoldus Elizabeth Stamm Tyler B. Bourret Petya K. Christova Jonás Oliva Miguel A. Redondo Venche Talgø Tamara Corcobado Ivan Milenković Marília Horta Jung Joan Webber Kurt Heungens Thomas JungAbstract
Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.
Authors
Daniele Prodorutti Nadia Vendrame Emanuela Coller Dino Zardi Arne Stensvand Vincent Philion Ilaria PertotAbstract
Sprinkler irrigation systems can release ascospores of Venturia inaequalis, the cause of apple scab, from infected leaves on the ground under conditions unsuitable for infection, and thus reducing the primary inoculum. Under-canopy irrigation was carried out for two hours in the middle of the day over overwintered apple leaves heavily infected with scab, either in a wind-protected enclosure or in a wind-exposed orchard. Ascospores were captured with rotating-arm spore traps at heights ranging from 0.3 m to 3.0 m above the ground. Ascospores dispersed above the irrigated layer and were detected at all heights above the sprinklers. Wind played a critical role in spore transport, evident from the set-up where wind interference was minimised by a wind fence, resulting in higher airborne spore numbers across all measured heights compared with the orchard exposed to unrestricted wind conditions. Furthermore, vertical temperature gradients significantly correlated with spore distributions, particularly where negative gradients at heights between 0.3 m and 0.05 m and positive gradients at heights between 1.0 m and 0.3 m led to spore retention within the irrigated zone. The findings highlight that ascospores, dispersed above the irrigated layers, could settle on susceptible tissues. It thus becomes imperative to ensure a rain-free period of at least 24 h post-irrigation and, if a rainfall shortly occurs after irrigation, the application of curative fungicides becomes essential following unexpected rain. Reliable weather forecasts are therefore crucial in determining the effectiveness of under-canopy irrigation to reduce apple scab incidence.
Authors
Arne StensvandAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Daniele Prodorutti Riccardo Bugiani Vincent Philion Arne Stensvand Emanuela Coller Clelia Tosi Claudio Rizzi Gino Angeli Ilaria PertotAbstract
Trials were carried out in apple orchards of Emilia-Romagna and Trentino-Alto Adige in northern Italy to investigate the effects of sprinkler irrigation on possible reduction in inoculum and subsequent disease pressure of Venturia inaequalis, the ascomycete causing apple scab. In spring, volumetric spore traps were placed above apple leaf litter containing pseudothecia with ascospores of the fungus. Pseudothecia matured more rapidly in irrigated plots, and 95% of the total number of spores trapped in a season was reached on average 164 degree days (base temperature 0°C) earlier in irrigated compared with nonirrigated plots. On average for seven location/year combinations, more than 50% of the ascospores were trapped following irrigations carried out for 2 h on sunny days before a forecasted rainfall. Subsequently, a much lower number of spores were trapped on rainy days following irrigation. Field trials with scab-susceptible apple cultivars were carried out in the two regions to evaluate the efficacy of sprinkler irrigation on disease. Irrigated and nonirrigated plots were either treated with different fungicide control strategies or not treated. Irrigation significantly reduced the incidence of apple scab at both sites, and the overall number of infected leaves and fruit was reduced by more than 50%. Midday sprinkler irrigation can significantly reduce the inoculum pressure of V. inaequalis in apple orchards. This may be a sustainable management strategy, especially in areas with extended dry periods.
Authors
Arne StensvandAbstract
No abstract has been registered
Authors
Arne StensvandAbstract
No abstract has been registered