Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2004
Authors
Nina Elisabeth Nagy Carl Gunnar Fossdal Paal Krokene Trygve Krekling Anders Lönneberg Anders Lønneborg Halvor SolheimAbstract
Polyphenolic parenchyma cells (PP cells) in Norway spruce (Picea abies (L.) Karst.) stem phloem play important roles in constitutive and inducible defenses. To determine whether anatomical and molecular changes in PP cells are correlated with tree resistance, we infected two Norway spruce clones with the pathogenic fungus Ceratocystis polonica (Siem.) C. Moreau. The fungus induced significantly different lesion lengths in the two clones, indicating that one clone was more resistant to the fungus (short lesions) than the other (long lesions). After infection, the cross-sectional area of PP cells and their vacuolar polyphenol bodies increased in the three most recent annual rings of PP cells in both clones. The more resistant clone had larger PP cells with denser polyphenol bodies than the less resistant clone, whereas the less resistant clone accumulated relatively more polyphenols after infection. Compared with the less resistant clone, the more resistant clone contained higher starch concentrations before infection that were reduced more quickly after infection before returning to original values. Low transcript levels of chalcone synthase were detected in uninfected tissues of both clones, but the levels increased dramatically after infection. Transcript levels were higher and peaked 6 days earlier in the more resistant clone than in the less resistant clone. The activity of at least one highly basic peroxidase isoform was greatly enhanced after infection, and this increase occurred earlier in the more resistant clone.
Abstract
Pathogen colonization and transcript levels of three host chitinases,putatively representing classes I, II, and IV, were monitored with real-time PCR after wounding and bark infection by Heterobasidion annosum in 32-year-old trees of Norway spruce (Picea abies) with low (clone 409) or high (clone 589) resistance to this pathogen. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. At 14 days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for clone 589 but had progressed further into the host tissue in clone 409. Transcript levels of the class II and IV chitinases increased after wounding or inoculation, but the transcript level of the class I chitinase declined after these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in clone 589 than in similar sites in clone 409 3 days after inoculation. This difference was even more pronounced 2 to 6 mm away from the inoculation point, where no infection was yet established, and suggests that the clones differ in the rate of chitinase-related signal perception or transduction. At 14 days after inoculation, these transcript levels were higher in clone 409 than in clone 589, suggesting that the massive upregulation of class II and IV chitinases after the establishment of infection comes too late to reduce or prevent pathogen colonization.
Authors
Risto Kasanen Jarkko Hantula M. Vourinen Jan Stenlid Halvor Solheim Timo KurkelaAbstract
Genetic variation in three multiallelic loci was analysed with Temperature Gradient Gel Electrophoresis in order to assess the genetic population structure of Venturia tremulae var. tremulae in order to understand the evolutionary potential of the pathogen against resistance breeding. Also the identification of the fungus was verified with molecular analysis of reference isolates. The Fst and Gst values were very low indicating no substructuring or restrictions to gene flow between Fennoscandian populations of V. tremulae. The results imply high epidemiological efficiency of the fungus and therefore continuous breeding programme should be implemented for Venturia resistance of aspen.
Authors
Tore Skrøppa Øystein Johnsen Carl Gunnar Fossdal Rudiger Baumann Jørgen A. Mølmann Ola G Dæhlen Nina Elisabeth Nagy G Müller-StarckAbstract
No abstract has been registered
Authors
Carl Gunnar Fossdal Øystein Johnsen Nina Elisabeth Nagy R Baumann Jørgen A.B. Mølmann Tore SkrøppaAbstract
Introduction: Survival and competitive successes of boreal forest trees depend on a balance between exploiting the full growing season and minimising frost injury through proper timing of hardening in autumn and dehardening in spring. Our research indicates that the female parents of Norway spruce adjust these timing events in their progeny according to the prevailing temperature conditions during sexual reproduction. Reproduction in a cold environment advances bud-set and cold acclimation in the autumn and dehardening and flushing in spring, whereas a warm reproductive environment delays these progeny traits by an unknown non-Mendelian mechanism. We are now looking for molecular mechanisms that can explain this “epigenetic” phenomenon. Material and methods: We have performed identical crosses with the same Norway spruce (Picea abies) parent, as discussed by Skrøppa & Johnsen (1994) and Johnsen et al. (1995), in combination with timed temperature treatments during shorter and longer periods from female meiosis, pollen tube growth, syngamy and embryogenesis and tested the progenies for bud-set and frost hardiness. We have followed the transcription of the spruce phytochromes PHYO, PHYP and PHYN and the class IV chitinase PaChi4 using Quantitative Multiplex Real-Time PCR. Results and conclusions: The effect of temperature on Adaptive properties is most likely a response to accumulated heat during embryogenesis and seed maturation. Our first attempt to look for a molecular mechanism has revealed that transcription of PHYO, PHYP and PHYN and the class IV chitinase PaChi4 (relative to alphaTubulin) all show higher transcription levels in progenies born under cold conditions than their full-sibs born under warmer conditions. This result is consistent with preliminary findings that methylation of cytosine in total DNA is higher in progenies reproduce under warm conditions than their colder full-sib counterparts. If these observations are related to methylation or other epigenetic effects, we may explain why progenies with a memory of a past time cold embryogenesis are more sensitive to short days than their full-sibs with a warmer embryonic history.
Authors
Carl Gunnar Fossdal Øystein Johnsen Rüdiger Baumann Jørgen A. Mølmann Ola Gram Dæhlen Nina Elisabeth Nagy Tore SkrøppaAbstract
Research indicate that the female parents of Norway spruce adjust these timing events in their progeny according to the prevailing temperature conditions during seed development. Reproduction in a cold environment advances bud-set and cold acclimation in the autumn and dehardening and flushing in spring, whereas a warm reproductive environment delays these progeny traits by an unknown non-Mendelian mechanism. We have performed identical crosses in combination with timed temperature treatments during shorter and longer periods from female meiosis, pollen tube growth, syngamy and embryogenesis, tested the progenies for bud-set and frost hardiness, and concluded that the effect of temperature most likely is a response to accumulated heat during embryogenesis and seed maturation. Our first attempt to look for a molecular mechanism has revealed that transcription of PHYO, PHYP and PHYN and the class IV chitinase PaChi4 (using RealTime PCR) all show higher transcription levels in progenies born under cold conditions than their full-sibs born under warmer conditions. This result is consistent with preliminary findings that methylation of cytosine in total DNA is higher in progenies reproduce under warm conditions than their colder full-sib counterparts. If these observations are related to methylation, we may explain why progenies with a memory of a past time cold embryogenesis are more sensitive to short days than their full-sibs with a warmer embryonic history.
Authors
Lars Sandved Dalen Heather Danforth John Einset Carl Gunnar Fossdal Aksel Granhus Harald Kvaalen Nina Elisabeth Nagy Paivi Liisa Rinne Linda Ripel Sissel Torre Gunnhild Søgaard Christiaan van der SchootAbstract
No abstract has been registered
Abstract
Introduction: The objectives of the present study were to monitor H. annosum colonization rate (Hietala et al., 2003) and expression of host chitinases in clonal Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR.Material and MethodsInoculation experiment: Ramets of two 32 -year-old clones differing in resistance were employed as host material. Inoculation and wounding was performed. A rectangular strip containing phloem and cambium, with the inoculation site in the middle, was removed 3, 7 and 14 days after inoculation.Quantification of fungal colonizationMultiplex real-time PCR detection of host and pathogen DNA was performed (Hietala et al., 2003). Quantification of gene expression: Chitinase levels were monitored with Singleplex real-time PCR.Results and ConclusionsThe colonization profiles provided by the quantitative multiplex real-time PCR procedure (Hietala et al., 2003), when combined with spatial and temporal transcript profiling of 3 chitinases, provide a useful basis for identifying defense related genes, and for assessing their impact on pathogen colonization rates.Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak (409) clone.Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signalperception.
Abstract
We have monitored the H. annosum colonization rate and expression of host chitinases in Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR. Ramets of two 32 -year-old clones differing in resistance were employed as host material and inoculation and wounding was performed. Quantification of fungal colonization: Multiplex real-time PCR detection of host and pathogen DNA was performed. Chitinase transcript levels were also monitored with real-time PCR. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak clone (409). Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signal perception. The spatiotemporal accumulation patterns obtained for the two clones used are consistent with their resistance classifications, these warranting further and more detailed studies on these chitinases.
2003
Abstract
Wintering ability in the field and resistance to different winter-stress factors under controlled environmental conditions were studied in a full-sib family of perennial ryegrass (Lolium perenne L.). Significant variation in tolerance to freezing and ice encasement, resistance to pink snow mould (Microdochium nivale) and also in winter survival and spring growth were found between the different genotypes. No strong correlations were found between the resistances to the different stress factors. These results indicate that resistance to different winter-stress factors is controlled by separate genes in perennial ryegrass. A low but significant positive correlation was found between spring growth of plants in the field after the first winter and both freezing tolerance and M. nivale resistance measured in controlled environments. Cold hardening seemed to influence freezing tolerance and M. nivale resistance differently in the different genotypes, since no distinct correlation in tolerance to freezing or resistance to M. nivale was found between unhardened and hardened plants. Tolerance or resistance to most of the winter stress factors measured was positively correlated with plant size.