Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

Increasing levels of global environmental change may have negative impacts on fertility and embryo viability in animals that could explain a recently reported increase in hatching failure in bird eggs across the globe. Here we test this relationship again by analyzing a dataset containing almost twice as many species and covering a longer time period than earlier works (n = 431 species during the period 1906–2022). We also tested for effects of Red List status and global population size. We found that hatching failure rates in a combined group of bird species currently classified as threatened (IUCN Red List categories Critically Endangered, Endangered and Vulnerable) or Near Threatened, peaked in the late 1970s to early 1980s and thereafter declined. A similar trend also existed in species with relatively small global populations. In contrast, no temporal trends were found in species in the Least Concern category, or in species with large global populations. Moreover, hatching failure rates declined significantly with increasing global population sizes. The temporal peak of hatching failure rates in threatened and Near Threatened species corresponds with the peak in environmental levels of the insecticide DDT. While this could suggest that environmental pollution caused the temporal trends in hatching failure rates, effects of inbreeding in small and threatened populations sampled more frequently during this period could not be excluded. Although we found no evidence suggesting that the rates of hatching failure in bird eggs are increasing, the current study supports previous works showing that species of high conservation concern appear to be more susceptible to factors leading to reproductive failure than other species.

To document

Abstract

Gaining the ability to fly actively was a ground-breaking moment in insect evolution, providing an unprecedented advantage over other arthropods. Nevertheless, active flight was a costly innovation, requiring the development of wings and flight muscles, the provision of sufficient energetic resources, and a complex flight control system. Although wings, flight muscles, and the energetic budget of insects have been intensively studied in the last decades, almost nothing is known regarding the flight-control devices of many crucial insect groups, especially beetles (Coleoptera). Here, we conducted a phylogenetic-informed analysis of flight-related mechanosensors in 28 species of bark beetles (Curculionidae: Scolytinae, Platypodinae), an economically and ecologically important group of insects characterized by striking differences in dispersal abilities. The results indicated that beetle flight apparatus is equipped with different functional types of mechanosensors, including strain- and flow-encoding sensilla. We found a strong effect of allometry on the number of mechanosensors, while no effect of relative wing size (a proxy of flight investment) was identified. Our study constitutes the first step to understanding the drivers and constraints of the evolution of flight-control devices in Coleoptera, including bark beetles. More research, including a quantitative neuroanatomical analysis of beetle wings, should be conducted in the future.>

Abstract

Conservation biological control (CBC) is a sustainable measure for ecological intensification in agriculture to establish and maintain robust natural enemy populations. CBC is contributing to integrated pest management with reduced use of pesticides and support of native biodiversity in agroecosystems. Despite rapidly expanding research on CBC during the last decades, its application in pest management at the farm level is very limited. Here, we tested a CBC strategy in a 5-year on-farm study at three locations in East Norway. This CBC strategy combined two tools to increase biological control of aphids in spring barley; 1-ATTRACT, the application of a volatile organic compound (VOC) attractant that increases lacewing egg laying, and 2-HABITAT, the maintenance of natural border vegetation. We found that the VOC attractants recruited natural enemies and guided them to the right place at the right time from the border vegetation into the cropping area to control the aphid population efficiently and reliably. The results also showed that the VOC attractants combined with periodical maintained natural border vegetation provided a higher lacewing activity and aphid suppression than with annual sown floral buffer strips. We found that maintained natural border vegetation supported by VOC attractants provided lacewing populations that controlled aphids up to 100 m into the cropping area. Without VOC attractants we recorded lacewing activity up to 50 m from the border into the cropping area if natural border vegetation was available, and up to 25 m if no border vegetation existed. The overall results demonstrated the feasibility of this CBC approach under Norwegian farming conditions leading to the successful adoption of this CBC-strategy by the farming community.