Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

The commercial apple production in Norway is limited to the small regions along the fjords in the southwest part of the country and around lakes or near the sea in the southeast with favorable climate. Due to the rapid rate of climate change over the recent decades, it is expected that suitable heat conditions for apple growing will expand to the areas that were previously too cold. This study analyses the heat suitability of future climate (2021–2100) under the RCP8.5 scenario for 6 common apple varieties in Norway: Discovery, Gravenstein, Summerred, Aroma, Rubinstep and Elstar. Previously established heat requirement criteria (based on the temperature threshold for the full blooming and growing degree days sum between the full bloom and harvest) are applied to the temperature outputs of the regional climate models downscaled to 1 km resolution. The assessment indicates that as temperature rises, heat conditions suitable for cultivation of all 6 apple varieties will expand. According to the ensemble median value, areas with the favorable heat conditions for growing at least one of the considered apple varieties will increase 25 times in the period 2021–2040 and 60 times in the period 2041–2060, compared to the referent period 1971–2000. At the same time, areas suitable for all 6 apple varieties will increase 3 times in the first, and 3.8 times in the latter period. The favorable areas will advance from south and southeast northwards and inland in the eastern region, along the west and northwestern coastline towards higher latitudes, and along continental parts of fjords. The fastest expansion of heat suitable conditions is expected for Discovery and Gravenstein. The findings of this study are relevant for zoning apple production future potential and for strategical planning of climate change adaptation measures within the sector. Weather-related risks, such as risks from winter low temperatures, spring frost, drought and extreme precipitation were not considered.

To document

Abstract

Agricultural production is already, and obviously, affected by climate change. Adapting to climate change includes reducing future risks to ensure yield quality and quantity and considers seizing any potential opportunities induced by climate change. In higher latitude areas, such as Norway, cold climate limits the cultivation of fruits. An increase in temperature offers more favorable conditions for fruit production. In this study, using available phenological observations (full blooming) and harvest dates, and meteorological data from the experimental orchard of NIBIO Ullensvang, the minimum heat requirements for growing different apple varieties are determined. Those criteria are used for zoning of the areas with heat favorable conditions for apple growing. Data on six varieties were used, with lower and higher requirements for heat for fruit development (Discovery, Gravenstein, Summerred, Aroma, Rubinstep, and Elstar). High resolution daily temperature data were generated and used for zoning of the areas with heat favorable conditions for apple growing within the selected domain, which includes Western Norway, Southern Norway, Eastern Norway, and the western part of Trøndelag, Mid-Norway. Dynamics of the change in such surfaces was assessed for the period of 1961–2020. The total surface with favorable heat conditions for growing the varieties with lesser requirement for heat increased three times during this period. The growing of more heat-demanding varieties increased from near zero to about 2.5% of the studied land surface. In the period of 2011–2020, surface area with favorable heat conditions for apple growing was almost 27,000 km2, and a surface area of about 4600 km2 can sustain growing of more heat-demanding varieties. The presented results show the increasing potential of the climate of Norway for apple cultivation and highlight the importance of implementation of fruit production planned according to climate change trends, including the assessment of potential risks from climate hazards. However, the methodology for determining heat requirements can be improved by using phenological ripening dates if available, rather than harvest dates which are impacted by human decision. Zoning of areas with the potential of sustainable apple growing requires the use of future climate change assessments and information on land-related features.

To document

Abstract

The European Union (EU) set clear climate change mitigation targets to reach climate neutrality, accounting for forests and their woody biomass resources. We investigated the consequences of increased harvest demands resulting from EU climate targets. We analysed the impacts on national policy objectives for forest ecosystem services and biodiversity through empirical forest simulation and multi-objective optimization methods. We show that key European timber-producing countries – Finland, Sweden, Germany (Bavaria) – cannot fulfil the increased harvest demands linked to the ambitious 1.5°C target. Potentials for harvest increase only exists in the studied region Norway. However, focusing on EU climate targets conflicts with several national policies and causes adverse effects on multiple ecosystem services and biodiversity. We argue that the role of forests and their timber resources in achieving climate targets and societal decarbonization should not be overstated. Our study provides insight for other European countries challenged by conflicting policies and supports policymakers.

To document

Abstract

Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.

To document

Abstract

Regeneration of polyploidy from young thallus segments of Kappaphycus alvarezii was optimized for genetic improvement. Kappaphycus thallus segment cultured on sterile sea water supplemented with various combinations of Indole acetic acid, Kinetin and Acardian Marine Plant Extract Powder revealed differential response on callus proliferation and development of new thallus. Presence of Acardian Marine Plant Extract Powder (3 mg/l) in combination with Indole acetic acid and Kinetin (0.01 mg/l each) had induced the longest emerging thallus. Exposure of thallus to colchicine at 0.01% with above combination was optimal to induce high frequency regeneration of polyploidy mostly from the meristematic cells. Anatomical study of colchicine induced polyploidy revealed larger cortical cells with irregular thickening of epidermal layer. Phase contrast and Scanning Electron Microscopic study revealed increase in cell size in cortical region with significantly larger number of spherical shaped carrageenan globules in colchicine induced polyploidy than normal thallus. Single cells isolated using enzymatic treatments from colchicine induced polyploidy, shown chromosome number with a ploidy status of 4n ≈ 40. Whereas in normal thallus, only half the number of chromosomes (2n ≈ 20) were observed. Polyploidy were successfully acclimatized gradually using raft method for further evaluation. This is the first report reveals the induction and regeneration of polyploidy in Kappaphycus. The possible application of this finding in genetic improvement of Kappaphycus is discussed.

To document

Abstract

Environmental assessments are required prior to remediation and redevelopment of contaminated sites. To date, regulatory guidelines are commonly based on total concentrations. Occasionally, simple leaching procedures are included in environmental assessment. Despite being essential for quantification of contaminant transport, analysis of hydraulic conductivity is rarely considered. Cost-effective methods that reflect both contaminant leaching and hydrogeological properties of contaminated soils are needed to ensure proper soil management. The aim of this study was to simultaneously evaluate contaminant leaching and hydraulic conductivity in soil using a combined column test (CCT) and compare this to the leaching results from batch tests (BT) and transport estimates derived from the empirical Hazen equation. Two soils of different origin were characterized using the CCT. By including physical and chemical factors affecting the release and retention of contaminants, the CCT provides an integrated assessment of leaching and transport of trace elements from soils. Additionally, the effect of soil compaction was investigated as a physical treatment to reduce leaching and transport in contaminated soils. Soil compaction did not demonstrate reduced leaching, but a less extensive contaminant transport was observed due to reduced hydraulic conductivity in the soil.

Abstract

Crown rot, caused by Phytophthora cactorum, is a devastating disease of strawberry. While most commercial octoploid strawberry cultivars (Fragaria × ananassa Duch) are generally susceptible, the diploid species Fragaria vesca is a potential source of resistance genes to P. cactorum. We previously reported several F. vesca genotypes with varying degrees of resistance to P. cactorum. To gain insights into the strawberry defence mechanisms, comparative transcriptome profiles of two resistant genotypes (NCGR1603 and Bukammen) and a susceptible genotype (NCGR1218) of F. vesca were analysed by RNA-Seq after wounding and subsequent inoculation with P. cactorum. Differential gene expression analysis identified several defence-related genes that are highly expressed in the resistant genotypes relative to the susceptible genotype in response to P. cactorum after wounding. These included putative disease resistance (R) genes encoding receptor-like proteins, receptor-like kinases, nucleotide-binding sites, leucine-rich repeat proteins, RPW8-type disease resistance proteins, and ‘pathogenesis-related protein 1’. Seven of these R-genes were expressed only in the resistant genotypes and not in the susceptible genotype, and these appeared to be present only in the genomes of the resistant genotypes, as confirmed by PCR analysis. We previously reported a single major gene locus RPc-1 (Resistance to Phytophthora cactorum 1) in F. vesca that contributed resistance to P. cactorum. Here, we report that 4–5% of the genes (35–38 of ca 800 genes) in the RPc-1 locus are differentially expressed in the resistant genotypes compared to the susceptible genotype after inoculation with P. cactorum. In particular, we identified three defence-related genes encoding wall-associated receptor-like kinase 3, receptor-like protein 12, and non-specific lipid-transfer protein 1-like that were highly expressed in the resistant genotypes compared to the susceptible one. The present study reports several novel candidate disease resistance genes that warrant further investigation for their role in plant defence against P. cactorum.