Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Agroforestry practices improve soil health which in turn improves crop nutrient concentrations and quality. This study examined how the agroforestry tree Gliricidia sepium intercropped with soybean, groundnuts, or maize affects crop nutrient compositions. The study was conducted in five Zambian chiefdoms for three crop-growing seasons (2019–2022) on 13 farmer-led demonstration trial sites. Seven treatments were tested that included maize, soybean, and groundnut plots with and without Gliricidia interventions. Grain samples were analyzed for crop nutrient contents using standard laboratory methods. Results showed that the treatments significantly (P < 0.05) improved maize nutritional properties except for crude fiber, total carbohydrate, and metabolizable energy. G. sepium intercropping with maize and soybean decreased the antinutritional contents and displayed better functional qualities. All elemental mineral components (except potassium, calcium, and sodium) were higher in the Gliricidia + maize intercrop than in the control treatment. The Gliricidia+soybean intercrop had lower mean mineral concentrations than the control (soybean only) except for Mg, Cu, and Zn. The Giliricidia+groundnut intercrop significantly increased groundnut mineral components except for Nitrogen, Phosphorus, Potassium, and Iron. It can be concluded that G. sepium intercropped with maize, soybean, and groundnuts significantly improved the crops’ nutritional quality.

To document

Abstract

Context Recent studies show that geodiversity—the diversity of Earth's landforms, materials, and processes—has a positive relationship with biodiversity at a landscape scale. However, there is a substantial lack of evidence from finer scales, although this knowledge could improve the understanding of biodiversity patterns. Objectives We investigate whether plot-scale geodiversity and plant species richness (vascular plants, bryophytes, lichens, and total richness) are positively linked in different tundra landscapes. Methods We collected geodiversity (presence of different geofeatures) and plant species richness data from 165 sites in three distinct regions: isolated low-lying mountain heaths, and in sporadic and continuous mountain heaths and tundra. We used non-metric multidimensional scaling (NMDS) ordination to explore the correlations between the composition of geofeatures and species richness, followed by univariate and multivariate generalized linear models (GLM), to assess whether georichness is important for species richness. Results Geofeature composition was linked to species richness in all regions, as indicated by NMDS ordination. Both univariate and multivariate GLM models showed statistically significant relationship between species richness and georichness in all studied species richness groups in continuous Arctic-alpine tundra. Additionally, there was a positive link between georichness and lichen richness in isolated boreal mountain tops. Main conclusions We showed that plot-scale geodiversity has a positive relationship with species richness, yet the effect varies regionally and between species groups. Our study provides strong empirical evidence that geodiversity supports species richness in continuous Arctic-alpine tundra. This information can be used in species richness models but also be applied in biodiversity management and conservation.

To document

Abstract

Access to safe drinking water and improved sanitation are important fundamental rights of people around the world to maintain good health. However, freshwater resources are threatened by many anthropogenic activities. Therefore, sustainable water supply is a challenge. Limited access to safe drinking water and unimproved sanitation facilities in some of its urban and rural areas are two of the major challenges for Bhutan in the 21st century. The water quality in the natural water systems in the cities and suburbs has significantly decreased while the urban infrastructure is being improved in Bhutan. Therefore, this study presents the state-of-the-art of water resources in Bhutan and the challenges for a sustainable water supply system. The current water status, drinking water sources and accessibility, factors affecting water quality degradation in urban and rural areas, water treatment methods, and implementation of sustainable drinking water accessibility with population growth in Bhutan are discussed in detail. Results of the review revealed that the water quality has deteriorated over the last decade and has a high challenge to provide safe water to some of the areas in Bhutan. Geographic changes, financial difficulties, urban expansion, and climate change are the reasons for the lack of safe drinking water accessibility for people in town areas. It is, therefore, recommended to have a comprehensive integrate water resources management (IWRM) approach while considering all stakeholders to find sustainable solutions for the challenges showcased in this paper.

To document

Abstract

Genetically modified maize DP41149 x MON 890349 x MON 874119 x DAS-40278-9 was developed by crossing to combine four single events: DP4114, MON 89034, MON 87411 and DAS-40278-9. DP4114 express the Cry1F protein to confer protection against certain lepidopteran pests, the Cry34Ab1 and Cry35Ab1 proteins to confer protection against certain coleopteran pests and PAT protein to confer tolerance to glufosinate-ammonium-containing herbicides. MON 89034 express the Cry1A.105 and Cry2Ab2 proteins to confer protection against certain lepidopteran pests. MON 87411 express the Cry3Bb1 protein to confer protection against certain coleopteran larvae and the DvSnf7 dsRNA confer protection against western corn rootworm, and the CP4 EPSPS protein for tolerance to glyphosate containing herbicides. DAS-40278-9 express the AAD-1 protein to catalyse the degradation of the general class ofherbicides known as aryloxyphenoxypropionates (AOPP) and to confer tolerance to 2,4- dichlorophenoxyacetic acid (2,4-D) herbicides.