Arctic Molecular Ecology Research at Svanhovd

NIBIO Svanhovd is a hub for genetics-based research and monitoring of arctic and subarctic ecosystems. The activity is strongly committed to collaborative environmental research in the Barents region, and cooperates extensively with all countries in the region. The station disseminates knowledge and performs R&D based upon the local natural environment, and runs active outreach and environmental education programs.

STARTSIDE_SVANHOVD_2021-10-15
Photo: NIBIO Svanhovd
NIBIO Svanhovd Projects
Latest news

Helena Klöckener is doing her Master's thesis at NIBIO Svanhovd, working on moose populations in Pasvik

Elg04.JPG

Moose cow with two calves in the Pasvik valley. (Photo: NIBIO Svanhovd).

Helena is using camera traps and scat collections to estimate the population size of the regional moose population. 

If you would like to know more about her research, go here. 

Svanhovd is located in the village of Svanvik beside the Pasvik river, in the middle of the wedge of Norwegian land that separates Russia and Finland in the north. The region represents a transition zone where the eastern Siberian taiga meets the western Boreal forest, and where northern mountain birch forests transition into arctic tundra. Numerous characteristic species of plants, mammals, birds and insects are found at this intersection of different ecosystems.

Research Projects

Svanhovd is home to NIBIO’s Department of Ecosystems in the Barents Region, which specializes in the use of molecular-genetic methods for applied and basic environmental research. Svanhovd’s combination of a location in the middle of a rich nature and availability of a modern DNA laboratory provides a unique setting for such work: it is literally possible to proceed from field sampling to laboratory analyses within a few minutes.

Svanhovd lies within the core habitat of the brown bear, and the station has been at the forefront of genetic monitoring of bear populations based on non-invasive samples such as scats and hair. Other ongoing projects focus on, for example, population genetics of polar bears in Svalbard and lynx in Finland, effects of stocking and hydroelectric dams on genetic structure of fish species, inference of diet and gut microbiomes in small mammals, and communities of herbivorous insects and pollinators in subarctic and arctic habitats.

Because of the diverse research activities, many different molecular-genetic methods and marker systems are in use at Svanhovd. For example, microsatellites/STRs and ddRADseq markers are used for population-genetic analyses of vertebrate species, and barcoding and metabarcoding approaches are used for inference of insect communities as well as surveys of microbiomes or environmental DNA.

The Svanhovd Conference Centre and Other Activities

In addition to NIBIO’s Department of Ecosystems in the Barents Region and the Molecular Ecology Laboratory, the station complex encompasses the Svanhovd Conference Centre, which is ideal for arranging both large and small meetings, gatherings and conferences. The centre has a spacious auditorium and a range of different-sized meeting rooms, 50 sleeping places, attractive local food, exciting exhibitions, and beautiful surroundings.

 

A fertile and exciting botanical garden with Nordic and alpine perennials, food plants and summer flowers frame the Svanhovd station, while a permanent exhibition presents the unique nature, culture and history of the Øvre Pasvik National Park and the Pasvik River valley. One section of the exhibition presents facts about the life of brown bear, and about bear-related research projects and management.

Services

DNA Laboratory Svanhovd

We are offering a range of genetic analyses of mammals, fish, insects and microorganisms. The data can be used for individual discrimination, sex and species determination, population genetics and detection of selected genetic markers. We also provide development of new marker sets in new species or study systems.

More information
Molecular Ecology Lab

The Molecular Ecology Laboratory at NIBIO-Svanhovd in northern Norway applies genetic and genomic technologies to address basic and applied research problems spanning a wide range of ecological, evolutionary, and environmental questions at the individual, population, and ecosystem level.

More information

Publications

To document

Abstract

Maintaining standing genetic variation is a challenge in human-dominated landscapes. We used genetic (i.e., 16 short tandem repeats) and morphological (i.e., length and weight) measurements of 593 contemporary and historical brown trout (Salmo trutta) samples to study fine-scale and short-term impacts of different management practices. These had changed from traditional breeding practices, using the same broodstock for several years, to modern breeding practices, including annual broodstock replacement, in the transnational subarctic Pasvik River. Using population genetic structure analyses (i.e., Bayesian assignment tests, DAPCs, and PCAs), four historical genetic clusters (E2001A-D), likely representing family lineages resulting from different crosses, were found in zone E. These groups were characterized by consistently lower genetic diversity, higher within-group relatedness, lower effective population size, and significantly smaller body size than contemporary stocked (E2001E) and wild fish (E2001F). However, even current breeding practices are insufficient to prevent genetic diversity loss and morphological changes as demonstrated by on average smaller body sizes and recent genetic bottleneck signatures in the modern breeding stock compared to wild fish. Conservation management must evaluate breeding protocols for stocking programs and assess if these can preserve remaining natural genetic diversity and morphology in brown trout for long-term preservation of freshwater fauna.

To document

Abstract

Loss of Arctic sea ice owing to climate change is predicted to reduce both genetic diversity and gene flow in ice-dependent species, with potentially negative consequences for their long-term viability. Here, we tested for the population-genetic impacts of reduced sea ice cover on the polar bear (Ursus maritimus) sampled across two decades (1995–2016) from the Svalbard Archipelago, Norway, an area that is affected by rapid sea ice loss in the Arctic Barents Sea. We analysed genetic variation at 22 microsatellite loci for 626 polar bears from four sampling areas within the archipelago. Our results revealed a 3–10% loss of genetic diversity across the study period, accompanied by a near 200% increase in genetic differentiation across regions. These effects may best be explained by a decrease in gene flow caused by habitat fragmentation owing to the loss of sea ice coverage, resulting in increased inbreeding of local polar bears within the focal sampling areas in the Svalbard Archipelago. This study illustrates the importance of genetic monitoring for developing adaptive management strategies for polar bears and other ice-dependent species.

To document

Abstract

Conservation and management of large carnivores requires knowledge of female and male dispersal. Such information is crucial to evaluate the population’s status and thus manage ment actions. This knowledge is challenging to obtain, often incomplete and contradictory at times. The size of the target population and the methods applied can bias the results. Also, population history and biological or environmental influences can affect dispersal on differ ent scales within a study area. We have genotyped Eurasian lynx (180 males and 102 females, collected 2003–2017) continuously distributed in southern Finland (~23,000 km2 ) using 21 short tandem repeats (STR) loci and compared statistical genetic tests to infer local and sex-specific dispersal patterns within and across genetic clusters as well as geo graphic regions. We tested for sex-specific substructure with individual-based Bayesian assignment tests and spatial autocorrelation analyses. Differences between the sexes in genetic differentiation, relatedness, inbreeding, and diversity were analysed using popula tion-based AMOVA, F-statistics, and assignment indices. Our results showed two different genetic clusters that were spatially structured for females but admixed for males. Similarly, spatial autocorrelation and relatedness was significantly higher in females than males. How ever, we found weaker sex-specific patterns for the Eurasian lynx when the data were sepa rated in three geographical regions than when divided in the two genetic clusters. Overall, our results suggest male-biased dispersal and female philopatry for the Eurasian lynx in Southern Finland. The female genetic structuring increased from west to east within our study area. In addition, detection of male-biased dispersal was dependent on analytical methods utilized, on whether subtle underlying genetic structuring was considered or not, and the choice of population delineation. Conclusively, we suggest using multiple genetic approaches to study sex-biased dispersal in a continuously distributed species in which pop ulation delineation is difficult.

Abstract

The lumpfish Cyclopterus lumpus is commercially exploited in numerous areas of its range in the North Atlantic Ocean, and is important in salmonid aquaculture as a biological agent for controlling sea lice. Despite the economic importance, few genetic resources for downstream applications, such as linkage mapping, parentage analysis, marker-assisted selection (MAS), quantitative trait loci (QTL) analysis, and assessing adaptive genetic diversity are currently available for the species. Here, we identify both genome- and transcriptome-derived microsatellites loci from C. lumpus to facilitate such applications. Across 2,346 genomic contigs, we detected a total of 3,067 microsatellite loci, of which 723 were the most suitable ones for primer design. From 116,555 transcriptomic unigenes, we identified a total of 231,556 microsatellite loci, which may indicate a high coverage of the available STRs. Out of these, primer pairs could only be designed for 6,203 loci. Dinucleotide repeats accounted for 89 percent and 52 percent of the genome- and transcriptome-derived microsatellites, respectively. The genetic composition of the dominant repeat motif types showed differences from other investigated fish species. In the genome-derived microsatellites AC/GT (67.8 percent), followed by AG/CT (15.1 percent) and AT/AT (5.6 percent) were the major motifs. Transcriptome-derived microsatellites showed also most dominantly the AC/GT repeat motif (33 percent), followed by A/T (26.6 percent) and AG/CT (11 percent). Functional annotation of microsatellite-containing transcriptomic sequences showed that the majority of the expressed sequence tags encode proteins involved in cellular and metabolic processes, binding activity and catalytic reactions. Importantly, STRs linked to genes involved in immune system process, growth, locomotion and reproduction were discovered in the present study. The extensive genomic marker information reported here will facilitate molecular ecology studies, conservation initiatives and will benefit many aspects of the breeding programmes of C. lumpus.

To document

Abstract

Habitat discontinuity, anthropogenic disturbance, and overharvesting have led to population fragmentation and decline worldwide. Preservation of remaining natural genetic diversity is crucial to avoid continued genetic erosion. Brown trout (Salmo trutta L.) is an ideal model species for studying anthropogenic influences on genetic integrity, as it has experienced significant genetic alterations throughout its natural distribution range due to habitat fragmentation, overexploitation, translocations, and stocking. The Pasvik River is a subarctic riverine system shared between Norway, Russia, and Finland, subdivided by seven hydroelectric power dams that destroyed about 70% of natural spawning and nursing areas. Stocking is applied in certain river parts to support the natural brown trout population. Adjacent river segments with different management strategies (stocked vs. not stocked) facilitated the simultaneous assessment of genetic impacts of dams and stocking based on analyses of 16 short tandem repeat loci. Dams were expected to increase genetic differentiation between and reduce genetic diversity within river sections. Contrastingly, stocking was predicted to promote genetic homogenization and diversity, but also potentially lead to loss of private alleles and to genetic erosion. Our results showed comparatively low heterozygosity and clear genetic differentiation between adjacent sections in nonstocked river parts, indicating that dams prevent migration and contribute to genetic isolation and loss of genetic diversity. Furthermore, genetic differentiation was low and heterozygosity relatively high across stocked sections. However, in stocked river sections, we found signatures of recent bottlenecks and reductions in private alleles, indicating that only a subset of individuals contributes to reproduction, potentially leading to divergence away from the natural genetic state. Taken together, these results indicate that stocking counteracts the negative fragmentation effects of dams, but also that stocking practices should be planned carefully in order to ensure long‐term preservation of natural genetic diversity and integrity in brown trout and other species in regulated river systems.

To document

Abstract

Climate change is modifying temperature and precipitation regimes across all seasons in northern ecosystems. Summer temperatures are higher, growing seasons extend into spring and fall and snow cover conditions are more variable during winter. The resistance of dominant tundra species to these season-specific changes, with each season potentially having contrasting effects on their growth and survival, can determine the future of tundra plant communities under climate change. In our study, we evaluated the effects of several spring/summer and winter climatic variables (i.e., summer temperature, growing season length, growing degree days, and number of winter freezing days) on the resistance of the dwarf shrub Empetrum nigrum. We measured over six years the ability of E. nigrum to keep a stable shoot growth, berry production, and vegetative cover in five E. nigrum dominated tundra heathlands, in a total of 144 plots covering a 200-km gradient from oceanic to continental climate. Overall, E. nigrum displayed high resistance to climatic variation along the gradient, with positive growth and reproductive output during all years and sites. Climatic conditions varied sharply among sites, especially during the winter months, finding that exposure to freezing temperatures during winter was correlated with reduced shoot length and berry production. These negative effects however, could be compensated if the following growing season was warm and long. Our study demonstrates that E. nigrum is a species resistant to fluctuating climatic conditions during the growing season and winter months in both oceanic and continental areas. Overall, E. nigrum appeared frost hardy and its resistance was determined by interactions among different season-specific climatic conditions with contrasting effects.

To document

Abstract

Wild animal populations experience selection pressures from both natural and anthropogenic sources. The availability of extensive pedigrees is increasing along with our ability to quantify the heritability and evolvability of phenotypic traits and thus the speed and potential for evolutionary change in wild populations. The environment may also affect gene expressions in individuals, which may in turn affect the potential of phenotypic traits to respond to selection. Knowledge about the relationship between the genetic and environmental components of phenotypic variation is particularly relevant, given ongoing anthropogenically driven global change. Using a quantitative genetic mixed model, we disentangled the genetic and environmental components of phenotypic variance in a large carnivore, the brown bear (Ursus arctos). We combined a pedigree covering ~1,500 individual bears over seven generations with location data from 413 bears, as well as data on bear density, habitat characteristics, and climatic conditions. We found a narrow‐sense heritability of 0.24 (95% CrI: 0.06–0.38) for brown bear head size, showing that the trait can respond to selection at a moderate speed. The environment contributed substantially to phenotypic variation, and we partitioned this into birth year (5.9%), nonadditive among‐individual genetic (15.0%), and residual (50.4%) environmental effects. Brown bear head circumference showed an evolvability of 0.2%, which can generate large changes in the trait mean over some hundreds of generations. Our study is among the first to quantify heritability of a trait in a hunted large carnivore population. Such knowledge about the degree to which species experiencing hunting can respond to selection is crucial for conservation and to make informed management decisions. We show that including important environmental variables when analyzing heritability is key to understanding the dynamics of the evolutionary potential of phenotypic traits.

Abstract

Several non-invasive methods for assessing stress responses have been developed and validated for many animal species. Due to species-specific differences in metabolism and excretion of stress hormones, methods should be validated for each species. The aim of this study was to conduct a physiological validation of an 11-oxoaetiocholanolone enzyme immunoassay (EIA) for measuring faecal cortisol metabolites (FCMs) in male reindeer by administration of adrenocorticotrophic hormone (ACTH; intramuscular, 0.25 mg per animal). A total of 317 samples were collected from eight male reindeer over a 44 h period at Tverrvatnet in Norway in mid-winter. In addition, 114 samples were collected from a group of reindeer during normal handling and calf marking at Stjernevatn in Norway. Following ACTH injection, FCM levels (median and range) were 568 (268–2415) ng/g after two hours, 2718 (414–8550) ng/g after seven hours and 918 (500–6931) ng/g after 24 h. Levels were significantly higher from seven hours onwards compared to earlier hours (p < 0.001). The FCM levels at Stjernevatn were significantly (p < 0.001) different before (samples collected zero to two hours; median: 479 ng/g) and after calf marking (eight to ten hours; median: 1469 ng/g). Identification of the faecal samples belonging to individual animals was conducted using DNA analysis across time. This study reports a successful validation of a non-invasive technique for measuring stress in reindeer, which can be applied in future studies in the fields of biology, ethology, ecology, animal conservation and welfare.

To document

Abstract

The insect order Hymenoptera originated during the Permian nearly 300 Mya. Ancestrally herbivorous hymenopteran lineages today make up the paraphyletic suborder ‘Symphyta’, which encompasses c. 8200 species with very diverse host-plant associations. We use phylogeny-based statistical analyses to explore the drivers of diversity dynamics within the ‘Symphyta’, with a particular focus on the hypothesis that diversification of herbivorous insects has been driven by the explosive radiation of angiosperms during and after the Cretaceous. Our ancestral-state estimates reveal that the first symphytans fed on gymnosperms, and that shifts onto angiosperms and pteridophytes – and back – have occurred at different time intervals in different groups. Trait-dependent analyses indicate that average net diversification rates do not differ between symphytan lineages feeding on angiosperms, gymnosperms or pteridophytes, but trait-independent models show that the highest diversification rates are found in a few angiosperm-feeding lineages that may have been favoured by the radiations of their host taxa during the Cenozoic. Intriguingly, lineages-through-time plots show signs of an early Cretaceous mass extinction, with a recovery starting first in angiosperm-associated clades. Hence, the oft-invoked assumption of herbivore diversification driven by the rise of flowering plants may overlook a Cretaceous global turnover in insect herbivore communities during the rapid displacement of gymnosperm- and pteridophyte-dominated floras by angiosperms.

To document See dataset

Abstract

Interspecific brood parasitism is common in many animal systems. Brood parasites enter the nests of other species and divert host resources for producing their own offspring, which can lead to strong antagonistic parasite–host coevolution. Here, we look at commonalities among social insect species that are victims of brood parasites, and use phylogenetic data and information on geographical range size to predict which species are most probably to fall victims to brood parasites in the future. In our analyses, we focus on three eusocial hymenopteran groups and their brood parasites: (i) bumblebees, (ii) Myrmica ants, and (iii) vespine and polistine wasps. In these groups, some, but not all, species are parasitized by obligate workerless inquilines that only produce reproductive-caste descendants.We find phylogenetic signals for geographical range size and the presence of parasites in bumblebees, but not in ants and wasps. Phylogenetic logistic regressions indicate that the probability of being attacked by one or more brood parasite species increases with the size of the geographical range in bumblebees, but the effect is statistically only marginally significant in ants. However, non-phylogenetic logistic regressions suggest that bumblebee species with the largest geographical range sizes may have a lower likelihood of harbouring social parasites than do hosts with medium-sized ranges. Our results provide new insights into the ecology and evolution of host–social parasite systems, and indicate that host phylogeny and geographical range size can be used to predict threats posed by social parasites, as well to design efficient conservation measures for both hosts and their parasites. This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.

To document

Abstract

Background The populations of brown bear (Ursus arctos) in northern Europe have been recovering or are in the process of recovery from a severe demographic bottleneck. Especially in the main popula- tions of Scandinavia and Finland, the number of individuals has been increasing substantially, compared to the population sizes estimated 20 years ago. Also, the populations have spatially expanded, putatively restoring connectivity and gene flow between these two, formerly separated populations. The Swedish Environmental Protection Agency (Naturvårdsverket) assigned a pro- ject to assess the connectivity and gene flow between the eastern and western parts of Fen- noscandia, Finland and Scandinavia. Objective Our objective was to detect possible immigration of brown bears from eastern Fennoscandia, specifically Finland, into Scandinavia. Material and Methods For the first time with continuous sampling of brown bears, we assessed the population genetic structure and gene flow between the brown bear populations of Scandinavia and Finland. We based our analyses on the dispersing sex, male brown bears, as females tend to be philopatric. Our target area was the county of Norrbotten in northern Sweden, at the border to Finland and Norway, representing the most likely area for potential eastern immigrants into Sweden. Previous research did not reveal any influx from Finland into Sweden. However, brown bear samples from Norrbotten have to a very limited degree been included in earlier studies on genetic connectivity in the area. In addition to a large number of samples from Norrbotten and northern Finland, we included genotypes sampled in regions surrounding the target area: Västerbotten in Sweden, Troms and Finnmark in Norway and southern Finland. We utilized all samples and genotypes from male bears available, and, also, genotyped recently collected samples of male brown bears from the study area. Analyses on population genetic structure and gene flow among regions were based on 924 individual male brown bear STR-genotypes (12 short tandem repeats or microsatellite markers). In order to reveal patterns of male dispersal and the distribution of male linages we used brown bear samples genotyped with nine Y-chromosomal STRs from 826 males. KEY WORDS : connectivity, european brown bear, Fennoscandia, Finland, male gene flow, migration, population genetic structure, Scandinavia, Ursus arctos NØKKELORD : europeisk brunbjørn, Fennoskandia, Finland, genflyt, konnektivitet, migrasjon, populasjons genetisk struktur, Skandinavia, Ursus arctos

To document

Abstract

Gjennom det nasjonale overvåkingsprogrammet for rovvilt i Norge ble det i 2018 samlet inn prøver til DNA analyse med antatt opphav fra brunbjørn (Ursus arctos) for tiende år på rad. Av de 1007 prøvene som ble samlet inn i 2018, ble 984 prøver inkludert i den genetiske analysen (720 ekskrementprøver, 252 hårprøver og 12 vevsprøver) og 53 % var positive for brunbjørn. Totalt gav 447 prøver (45 %) en full DNA-identitet, og det ble fra disse prøvene påvist 138 ulike bjørner; 63 hunnbjørner og 75 hannbjørner. Dette er en økning på 10 % (13 individer) sammen-lignet med 2017, mens kjønnsfordelingen bare har endret seg med 2% i samme periode. Dette er det høyeste antallet brunbjørn registrert siden 2013, og det høyeste antallet hunnbjørn regi-strert siden overvåkningen startet i 2009. Forekomsten av brunbjørn er hovedsakelig konsentrert i fylkene Finnmark (49), Hedmark (44) og Trøndelag (32) som tidligere. Av det totale antallet bjørner påvist i 2018 er 59 % (81 individer) tidligere påvist i Norge, noe som utgjør en reduksjon i gjenfunn på 6 % i forhold til i fjor. Dette er den laveste andelen gjenfunn siden 2009. Om man inkluderer gjenfunn fra Sverige, Finland og Russland utgjør det totale antallet gjenfunn 87 indi-vider (63 %). Estimatet for 2018 på 7,7 ynglinger er det høyeste anslaget siden overvåkningen startet i 2009, og er en økning fra 2017 hvor estimatet lå på 6,9 ynglinger. I rovviltregion 5 (Hedmark) ligger antallet estimerte ynglinger i år, som i fjor, over bestandsmålet på 3 årlige ynglinger. De andre rovviltregionene ligger under bestandsmålet i 2018.

To document

Abstract

Large terrestrial carnivores can sometimes display strong family bonds affecting the spatial distribution of related individuals. We studied the spatial genetic relatedness and family structure of female Eurasian lynx, continuously distributed in southern Finland. We hypothesized that closely related females form matrilineal assemblages, clustering together with relatives living in the neighboring areas. We evaluated this hypothesis using tissue samples of 133 legally harvested female lynx (from year 2007 to 2015), genotyped with 23 microsatellite markers, and tested for possible spatial genetic family structure using a combination of Bayesian clustering, spatial autocor ‐ relation, and forensic genetic parentage analysis. The study population had three potential family genetic clusters, with a high degree of admixture and geographic overlap, and showed a weak but significant negative relationship between pairwise genetic and geographic distance. Moreover, parentage analysis indicated that 64% of the females had one or more close relatives (sister, mother, or daughter) within the study population. Individuals identified as close kin consistently assigned to the same putative family genetic cluster. They also were sampled closer geographically than females on average, although variation was large. Our results support the possibility that Eurasian lynx forms matrilineal assemblages, and comparisons with males are now required to further assess this hypothesis.

Abstract

The apple fruit moth Argyresthia conjugella (Lepidoptera, Yponomeutidae) is a seed predator of rowan (Sorbus aucuparia) and is distributed in Europe and Asia. In Fennoscandia (Finland, Norway and Sweden), rowan fruit production is low every 2–4 years, and apple (Malus domestica) functions as an alternative host, resulting in economic loss in apple crops in inter-mast years. We have used Illumina MiSeq sequencing to identify a set of 19 novel tetra-nucleotide short tandem repeats (STRs) in Argyresthia conjugella. Such motifs are recommended for genetic monitoring, which may help to determine the eco-evolutionary processes acting on this pest insect. The 19 STRs were optimized and amplified into five multiplex PCR reactions. We tested individuals collected from Norway and Sweden (n = 64), and detected very high genetic variation (average 13.6 alleles, He = 0.75) compared to most other Lepidoptera species studied so far. Spatial genetic differentiation was low and gene flow was high in the test populations, although two non-spatial clusters could be detected. We conclude that this set of genetic markers may be a useful resource for population genetic monitoring of this economical important insect species.

To document

Abstract

1. Large-scale pattern-oriented approaches are useful to understand the multi-level processes that shape the genetic structure of a population. Matching the scales of patterns and putative processes is both a key to success and a challenge. 2. We have developed a simple statistical approach, based on variogram analysis, that identifies multiple spatial scales where the population pattern, in this case genetic structure, have highest expression (i.e. the spatial scales at which the strength of patterning of isolation-by-distance (IBD) residual variance reached maximum) from empirical data and, thus, at which scales it should be studied relative to the underlying processes. The approach is applicable to any spatially explicit pairwise data, including genetic, morphological or ecological distance or similarity of individuals, populations and ecosystems. To exemplify possible applications of this approach, we analysed microsatellite genotypes of 1,530 brown bears from Sweden and Norway. 3. The variogram approach identified two scales at which population structure was strongest, thus indicating two different scale-dependent processes: home-rangerelated processes at scales <35 km, and subpopulation division at scales >98 km. On the basis of this, we performed a scale-explicit analysis of genetic structure using DResD analysis and compared the results with those obtained by the Bayesian clustering implemented in structure. 4. We found that the genetic cluster identified in central Scandinavia by Structure is caused by IBD, with distinct gene flow barriers to the south and north. We discuss possible applications and research perspectives to further develop the approach.

To document See dataset

Abstract

We describe Arge bella Wei & Du sp. nov., a large and beautiful species of Argidae from south China, and report its mitochondrial genome based on high-throughput sequencing data. We present the gene order, nucleotide composition of proteincoding genes (PCGs), and the secondary structures of RNA genes. The nearly complete mitochondrial genome of A. bella has a length of 15,576 bp and a typical set of 37 genes (22 tRNAs, 13 PCGs, and 2 rRNAs). Three tRNAs are rearranged in the A. bella mitochondrial genome as compared to the ancestral type in insects: trnM and trnQ are shuffled, while trnW is translocated from the trnW -trnC-trnY cluster to a location downstream of trnI. All PCGs are initiated by ATN codons, and terminated with TAA, TA or T as stop codons. All tRNAs have a typical cloverleaf secondary structure, except for trnS1. H821 of rrnS and H976 of rrnL are redundant. A phylogenetic analysis based on mitochondrial genome sequences of A. bella, 21 other symphytan species, two apocritan representatives, and four outgroup taxa supports the placement of Argidae as sister to the Pergidae within the symphytan superfamily Tenthredinoidea.

To document

Abstract

Biogeography has traditionally focused on the spatial distribution and abundance of species. Both are driven by the way species interact with one another, but only recently community ecologists realized the need to document their spatial and temporal variation. Here, we call for an integrated approach, adopting the view that community structure is best represented as a network of ecological interactions, and show how it translates to biogeography questions. We propose that the ecological niche should encompass the effect of the environment on species distribution (the Grinnellian dimension of the niche) and on the ecological interactions among them (the Eltonian dimension). Starting from this concept, we develop a quantitative theory to explain turnover of interactions in space and time – i.e. a novel approach to interaction distribution modeling. We apply this framework to host–parasite interactions across Europe and find that two aspects of the environment (temperature and precipitation) exert a strong imprint on species co-occurrence, but not on species interactions. Even where species co-occur, interaction proves to be stochastic rather than deterministic, adding to variation in realized network structure. We also find that a large majority of host-parasite pairs are never found together, thus precluding any inferences regarding their probability to interact. This first attempt to explain variation of network structure at large spatial scales opens new perspectives at the interface of species distribution modeling and community ecology.

Abstract

Undersøkelse av antibiotikaresistensmarkørgenet neomycin fosfotransferase II (nptII) i prøver fra 12 ville arter fra Norge I et prosjekt fra Miljødirektoratet har vi testa for tilstedeværelse av nptII genet i 219 prøver fra 12 ulike ville arter fra hele Norge. Utvalget av prøver inkluderte planter (løvetann, rødkløver og markjordbær), insekter (skogmaur, rognebærmøll og liten høstmåler), snegl (brunsnegl), fisk (ørret og rognkjeks) og pattedyr (rødrev, brunbjørn og isbjørn). Vi brukte to ulike sanntids-PCR (Real-Time-PCR) tester for å undersøke fo tilstedeværelsen av kopier av nptII-genet i de 219 prøvene. Vi fant at nesten alle prøvene var negative (99%), mens kun tre enkeltprøver (løvetann, rødkløver og skogmaur) viste et svært lavt nivå av nptII (3-4 kopier). De positive prøvene kan være naturlige varianter eller kontaminering fra forskningslaboratorier. Vi konkluderer med at der er behov for utvida undersøkelser innenen for dette fagfeltet.

To document

Abstract

Det nasjonale overvåkingsprogrammet for rovvilt i Norge har i 2017 samlet inn prøver med antatt opphav fra brunbjørn (Ursus arctos) for niende året på rad. Det ble totalt samlet inn 1034 prøver i 2017 (776 ekskrementprøver, 249 hårprøver og 9 vevsprøver) hvorav 59 % var positive for brunbjørn. Det ble påvist 125 ulike bjørner; 55 av dem var hunnbjørner og 70 var hannbjørner. Antall påviste bjørn er på nivå med forrige år (125 bjørner, 51 hunnbjørner og 74 hannbjørner), men kjønnsfordelingen viser en større andel hunner i år. Beregninger av antall ynglinger i 2017 ligger på 6,9 ynglinger, som er en svak økning i forhold til tidligere år. Forekomsten av brunbjørn er hovedsakelig konsentrert i fylkene Hedmark (48), Finnmark (37) og Nord-Trøndelag (29) som tidligere. I tillegg er det påvist hunnbjørner i Troms (4) og Nordland (1). Av det totale antallet bjørner påvist i 2017 er 66 % (82 individer) tidligere påvist i Norge, noe som utgjør en svak økning i gjenfunn i forhold til i fjor. Om man inkluderer gjenfunn fra Sverige, Finland og Russland utgjør det totale antallet gjenfunn 93 individer (74 %). DNA, brunbjørn, Ursus arctos, molekylær økologi, DNA profiler,overvåking, Norge, brown bear, molecular ecology, DNA profiles, monitoring, Norway