Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Belachew Gizachew Zeleke Deo D. Shirima Jonathan Rizzi Collins Byobona Kukunda Eliakimu ZahabuAbstract
Tanzania dedicates a substantial proportion (38%) of its territory to conservation, with a large number of Protected Areas (PAs) managed under various regimes. Nevertheless, the country still experiences high rates of deforestation, which threaten the ecological integrity and socio-economic benefits of its forests. We utilized the Global Forest Change Dataset (2012–2022) and implemented a Propensity Score Matching (PSM) approach followed by a series of binomial logit regression modeling. Our objectives were to evaluate (1) the likelihood of PAs in avoiding deforestation compared with unprotected forest landscapes, (2) the variability in effectiveness among the different PA management regimes in avoiding deforestation, (3) evidence of leakage, defined here as the displacement of deforestation beyond PA boundaries as a result of protection inside PAs. Our findings reveal that, despite ongoing deforestation within and outside of PAs, conservation efforts are, on average, three times more likely to avoid deforestation compared with unprotected landscapes. However, the effectiveness of avoiding deforestation significantly varies among the different management regimes. National Parks and Game Reserves are nearly ten times more successful in avoiding deforestation, likely because of the stringent set of regulations and availability of resources for implementation. Conversely, Nature Forest Reserves, Game Controlled Areas, and Forest Reserves are, on average, only twice as likely to avoid deforestation, indicating substantial room for improvement. We found little evidence of the overall leakage as a consequence of protection. These results highlight the mixed success of Tanzania’s conservation efforts, suggesting opportunities to enhance the effectiveness of many less protected PAs. We conclude by proposing potential strategic pathways to enhance further the climate and ecosystem benefits of conservation in Tanzania.
2022
Authors
Belachew Gizachew ZelekeAbstract
We present an innovative value chain on upscaling and commercial production of carbonized bio-briquettes from agro-industrial waste (mainly a sugarcane bagasse), that aims at substituting a forest-based charcoal for household consumption and thus reduce deforestation. We demonstrate the three main pillars of the value-chain: (1). Empowering and capacity building of members of the cooperatives (mainly women), through developing technical skills, using and maintaining technologies and tools, ergonomics and safety, businesses and marketing. (2). Innovative locally built biowaste to biofuel conversion technologies. This are technologies for raw material (biowaste) preparation (transport, drying and storage), locally developing carbonization kilns of high efficiency and commercial volume, biochar production, selection of bio-based binders, local fabrication of briquetting machines, production of briquettes, drying and storage of briquettes. This section demonstrates (using videos and pictures) on how a daily briquettes production of 3-tons is achieved, with briquette qualities comparable to that of wood-based charcoal. We also demonstrate production of custom-made cookstoves for briquettes by modifying existing local cookstoves. Further, we demonstrate the amount of avoided deforestation through such innovative local approaches. (3). Business and market development: This aims at bringing green-jobs to villages in sustainable supply, distribution, and sales of clean locally produced bio-briquettes. The program enables capacity building of members of the cooperatives in business and marketing; building partnership with key market segments and cooperation with private sector such as distributors, consumers, lenders and banks. The complete value-chain is a result of a successful development and partnership program (2018-2021) supported by the government of Norway that involved Kenyan national institutions, local community cooperatives and international partners.
2021
Authors
Johannes BreidenbachAbstract
No abstract has been registered
Abstract
Background Bioenergy plays a key role in the transition to a sustainable economy in Europe, but its own sustainability is being questioned. We study the experiences of Sweden, Finland, Denmark and Norway, to find out whether the forest-based bioenergy chains developed in the four countries have led to unsustainable outcomes and how the countries manage the sustainability risks. Data were collected from a diversity of sources including interviews, statistical databases, the scientific literature, government planning documents and legislation. Results Sustainability risks of deforestation, degradation of forests, reduced carbon pools in forests, expensive biopower and heat, resource competition, and lack of acceptance at the local level are considered. The experience of the four countries shows that the sustainability risks can to a high degree be managed with voluntary measures without resorting to prescriptive measures. It is possible to add to the carbon pools of forests along with higher harvest volumes if the risks are well managed. There is, however, a marginal trade-off between harvest volume and carbon pools. Economic sustainability risks may be more challenging than ecological risks because the competitiveness order of renewable energy technologies has been reversed in the last decade. The risk of resource competition harming other sectors in the economy was found to be small and manageable but requires continuous monitoring. Local communities acting as bioenergy communities have been agents of change behind the most expansive bioenergy chains. A fear of non-local actors reaping the economic gains involved in bioenergy chains was found to be one of the risks to the trust and acceptance necessary for local communities to act as bioenergy communities. Conclusions The Nordic experience shows that it has been possible to manage the sustainability risks examined in this paper to an extent avoiding unsustainable outcomes. Sustainability risks have been managed by developing an institutional framework involving laws, regulations, standards and community commitments. Particularly on the local level, bioenergy chains should be developed with stakeholder involvement in development and use, in order to safeguard the legitimacy of bioenergy development and reconcile tensions between the global quest for a climate neutral economy and the local quest for an economically viable community. Keywords: Bioenergy, Sustainability, Risk assessment, Risk management, Nordic countries
2020
Abstract
Protected Areas (PAs) in Tanzania had been established originally for the goal of habitat, landscape and biodiversity conservation. However, human activities such as agricultural expansion and wood harvesting pose challenges to the conservation objectives. We monitored a decade of deforestation within 708 PAs and their unprotected buffer areas, analyzed deforestation by PA management regimes, and assessed connectivity among PAs. Data came from a Landsat based wall-to-wall forest to non-forest change map for the period 2002–2013, developed for the definition of Tanzania’s National Forest Reference Emissions Level (FREL). Deforestation data were extracted in a series of concentric bands that allow pairwise comparison and correlation analysis between the inside of PAs and the external buffer areas. Half of the PAs exhibit either no deforestation or significantly less deforestation than the unprotected buffer areas. A small proportion (10%; n = 71) are responsible for more than 90% of the total deforestation; but these few PAs represent more than 75% of the total area under protection. While about half of the PAs are connected to one or more other PAs, the remaining half, most of which are Forest Reserves, are isolated. Furthermore, deforestation inside isolated PAs is significantly correlated with deforestation in the unprotected buffer areas, suggesting pressure from land use outside PAs. Management regimes varied in reducing deforestation inside PA territories, but differences in protection status within a management regime are also large. Deforestation as percentages of land area and forested areas of PAs was largest for Forest Reserves and Game Controlled areas, while most National Parks, Nature Reserves and Forest Plantations generally retained large proportions of their forest cover. Areas of immediate management concern include the few PAs with a disproportionately large contribution to the total deforestation, and the sizeable number of PAs being isolated. Future protection should account for landscapes outside protected areas, engage local communities and establish new PAs or corridors such as village-managed forest areas.
Authors
Jan Emblemsvåg Nina Pereira Kvadsheim Jon Halfdanarson Matthias Koesling Bjørn Tore Nystrand Jan Sunde Celine ReboursAbstract
Soy protein concentrate (SPC) is a key ingredient in fish feed and most of it originates from Brazil. However, the Brazilian soy industry has reportedly resulted in significant environmental problems including deforestation. Consequently, new sources for protein are investigated and protein extracted from farmed seaweed is considered an alternative. Therefore, we investigate how seaweed protein product (SPP) can compete against SPC as a protein ingredient for fish feed. The study uses the positioning matrix, cost analyses involving the power law, and uncertainty analysis using Monte Carlo simulations, and key research challenges are identified. The initial finding is that, with the emerging seaweed industry, the cost of producing SPP is too high to be competitive for fish feed applications. To overcome this challenge, two solutions are investigated. First, substantial investments in cultivation and processing infrastructure are needed to accomplish scale, and a break-even scale of 65,000 tonnes is suggested. The second but more promising avenue, preferably in combination with the former, is the extraction of seaweed protein and high-value seaweed components. With mannitol and laminaran as co-products to the SPP, there is a 25–30% probability of a positive bottom line. Researches on extraction processes are therefore a necessity to maximize the extraction of value-added ingredients. Over time, it is expected that the competitive position of SPP will improve due to the upscaling of the volume of production as well as better biorefinery processes.
2019
Abstract
Deforestation influences surface properties such as surface roughness, resulting in changes in the surface energy balance and surface temperature. Recent studies suggest that the biogeophysical effects are dominated by changing roughness, and it remains unclear whether this can be reconciled with earlier modeling studies that highlighted the importance of a reduction of evapotranspiration in the low latitudes and a reduction of net shortwave radiation at the surface in the high latitudes. To clarify this situation, we analyze the local effects of deforestation on surface energy balance and temperature in the MPI‐ESM climate model by performing three separate experiments: switching from forest to grass all surface properties, only surface albedo, and only surface roughness. We find that the locally induced changes in surface temperature are dominated by changes in surface roughness for the annual mean, the response of the diurnal amplitude, and the seasonal response to deforestation. For these three quantities, the results of the MPI‐ESM lie within the range of observation‐based data sets. Deforestation‐induced decreases in surface roughness contribute substantially to winter cooling in the boreal regions and to decreases in evapotranspiration in the tropics. By comparing the energy balance decompositions from the three experiments, the view that roughness changes dominate the biogeophysical consequences of deforestation can be reconciled with the earlier studies highlighting the relevance of evapotranspiration.
Authors
Lalisa A. Duguma Joanes Atela Peter A. Minang Alemayehu N. Ayana Belachew Gizachew Zeleke Judith M. Nzyoka Florence BernardAbstract
Deforestation and forest degradation (D&D) in the tropics have continued unabated and are posing serious threats to forests and the livelihoods of those who depend on forests and forest resources. Smallholder farmers are often implicated in scientific literature and policy documents as important agents of D&D. However, there is scanty information on why smallholders exploit forests and what the key drivers are. We employed behavioral sciences approaches that capture contextual factors, attitudinal factors, and routine practices that shape decisions by smallholder farmers. Data was collected using household surveys and focus group discussions in two case study forests—Menagesha Suba Forest in Ethiopia and Maasai Mau Forest in Kenya. Our findings indicate that factors that forced farmers to engage in D&D were largely contextual, i.e., sociodemographic, production factors constraint, as well as policies and governance issues with some influences of routine practices such as wood extraction for fuelwood and construction. Those factors can be broadly aggregated as necessity-driven, market-driven, and governance-driven. In the forests studied, D&D are largely due to necessity needs and governance challenges. Though most factors are intrinsic to smallholders’ context, the extent and impact on D&D were largely aggravated by factors outside the forest landscape. Therefore, policy efforts to reduce D&D should carefully scrutinize the context, the factors, and the associated enablers to reduce forest losses under varying socioeconomic, biophysical, and resource governance conditions.
2018
Authors
Kalev Jogiste Lee E. Frelich Diana Laarmann Floortje Vodde Endijs Baders Janis Donis Aris Jansons Ahto Kangur Henn Korjus Kajar Köster Jürgen Kusmin Timo Kuuluvainen Vitas Marozas Marek Metslaid Sandra Metslaid Olga Polyachenko Anneli Poska Sille Rebane John A. StanturfAbstract
In the Baltic States region, anthropogenic disturbances at different temporal and spatial scales mostly determine dynamics and development phases of forest ecosystems. We reviewed the state and condition of hemiboreal forests of the Baltic States region and analyzed species composition of recently established and permanent forest (PF). Agricultural deforestation and spontaneous or artificial conversion back to forest is a scenario leading to ecosystems designated as recent forest (RF, age up to two hundred years). Permanent forest (PF) was defined as areas with no records of agricultural activity during the last 200 yr, including mostly forests managed by traditional even-aged (clear-cut) silviculture and salvage after natural disturbances. We hypothesized that RF would have distinctive composition, with higher dominance by hardwoods (e.g., aspen and birch), compared to PF. Ordination revealed divergence in the RF stands; about half had the hypothesized composition distinct from PF, with a tight cluster of stands in the part of the ordination space with high hardwood dominance, while the remaining RF stands were scattered throughout the ordination space occupied by PF with highly variable species composition. Planting of conifers, variability in site quality, and variability in spatial proximity to PF with relatively natural ecosystem legacies likely explained the variable compositions of this latter group of RF. We positioned the observations of RF in a classic quantification of site type conditions (based on Estonian forest vegetation survey previously carried out by L~ohmus), which indicated that RF was more likely to occur on areas of higher soil fertility (in ordination space). Climatic and anthropogenic changes to RF create complex dynamic trends that are difficult to project into the future. Further research in tracing land use changes (using pollen analysis and documented evidence) should be utilized to refine the conceptual framework of ecosystem legacy and memory. Occurrence and frequency of deforestation and its characteristics as a novel disturbance regime are of particular interest.
Abstract
Throughout history, man has strongly utilized and affected forest genetic resources in Europe. From an evolu-tionary perspective deforestation/fragmentation (→genetic drift), transfer of seeds and plants to new environ-ments (→mainly gene flow) and selective logging (→selection) are most relevant and have been particularlyaddressed in this review. In contrast to most conifers, broadleaved tree populations have been especially reducedby historic fragmentation, and consequently, the related genetic effects have been possibly more pronounced.Widespread wind-pollinated species with wind/animal dispersed seeds appear to be more resilient to frag-mentation than species with e.g. small geographic ranges and gravity dispersed seeds. In addition, naturallyfragmented populations in the range margins may be more vulnerable than central populations as conditions forgene flow are generally impaired in peripheral areas. Traits important for adaptation (e.g. bud burst, bud set) arecontrolled by many genes, and as a corollary of fragmentation such genes are lost at a low rate. Large scalecommercial translocation of seeds and plants for forestry purposes applies mostly to conifers and dates backabout two centuries. Although many translocations have been successful in a forestry perspective, exposure tonew selective regimes has sometimes challenged the adaptive limits of populations and caused setbacks or evendiebacks of populations, as well as influencing neighbouring populations with maladapted genes (e.g. Scots pine,maritime pine, larch). Many tree species have substantial plasticity in fitness-related traits, which is vital forsurvival and viability following translocations. Selective logging has been practiced in Europe over the last twocenturies and implies removal of superior trees with respect to growth and quality. Such traits are partly undergenetic control. Consequent removal of superior trees may therefore have negative effects on the remaining genepool, but this effect will also be counteracted by extensive gene flow. Although humans have strongly affectedEuropean forest trees over the last millennia, we argue that they are still resilient from an evolutionary perspective.