Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

To document

Abstract

No abstract has been registered

To document

Abstract

The Expert Group for Technical Advice on Organic Production (EGTOP) was requested to advise on the use of several substances with plant protection or fertilising effects in organic production. The Group discussed whether the use of these substances and methods is in line with the objectives and principles of organic production, and whether they should be included in Regulation (EU) 2021/1165.

To document

Abstract

The Expert Group for Technical Advice on Organic Production (EGTOP) was requested to advise on the use of several substances in organic production. The Group discussed whether the use of these substances is in line with the objectives and principles of organic production and whether they should therefore be included in Annex V of Commission Implementing Regulation (EU) 2021/1165.

Abstract

• Damage from wind, snow, spruce bark beetle, and large pine weevil are likely to be less severe in CCF than in RF. However, the conversion of RF to CCF may briefy expose stands to windthrow. • Browsing by large herbivores on saplings may limit regeneration of tree species other than spruce in continuous cover forestry and reduce tree species diversity, but alternative silvicultural practices may also increase forage availability in the feld and shrub layer. Browsing damage outcomes for saplings in CCF are diffcult to predict. • For many types of damage in CCF, substantial knowledge gaps complicate the assessment of damage risk.

Abstract

• Genetic effects of continuous cover forestry (CCF) are not well known. We need more research, especially on the genetics of spruce-dominated CCF sites. Levels of relatedness are of interest, as are estimates of safe limits for the intensity and duration of CCF practices that secure genetic potential for good growth and quality. • With even-aged forestry, genetically improved regeneration material can be used to mitigate climate change-related risks through breeding and deployment recommendations. In CCF, currently based on natural regeneration, we assume that enough seedlings establish, and that sites contain enough genetic variation to enable natural selection and evolutionary processes. • Based on research in other regions, the number of reproducing trees must be kept large to avoid excessive levels of relatedness and inbreeding and to maintain suffcient levels of genetic diversity. • In some well-documented long-term experiments in other regions, intensive high-grading has led to slower growth rates, which could partly be due to genetic degradation of the stand. If contemporary recommendations for selection cutting are followed, negative genetic effects should be unlikely.