Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2009

To document

Abstract

The relative effects of using light (2-3 Mg) versus heavier (5-7 Mg) tractors, shallow (15 cm) versus deeper (25 cm) ploughing and on-land versus in-furrow wheel placement during ploughing were investigated from 2003 to 2006 in organic rotations (wheat or barley, green manure, oats with peas) and conventionally fertilized barley. Trials were located on loam soil in south-eastern Norway and silty clay loam in central Norway. Ploughing was performed in spring, when the topsoil moisture content was at or below field capacity, using single furrow ploughs that allowed alternative wheel placement and resulted in complete coverage of the surface by wheels each year (ca. 3 times the normal coverage during ploughing). Low tyre inflation pressures (:<= 80 kPa) were used throughout. The use of a heavy tractor increased topsoil bulk density slightly in the loam soil, and, in combination with in-furrow wheeling, it reduced air-filled pore space and air permeability at 18-22 cm. On the silty clay loam, the use of a heavy tractor did not increase bulk density, but it reduced air-filled pore space throughout the topsoil. In-furrow wheeling reduced air-filled pore space in this soil also, compared to on-land wheeling. Penetration resistance was in this soil always greater at 15-25 cm depth after shallow than after deep ploughing, especially with in-furrow rather than on-land wheeling. Shallow ploughing led on both soils to marked increases in perennial weed biomass compared to deep ploughing. Earthworms were hardly affected by the treatments, but in the loam in 2006 a higher number of individuals were found where the light rather than the heavy tractor had been used. Few significant treatment effects were found on grain yield and quality. Deep ploughing with a light tractor gave the highest wheat yield and protein content in 2 years on the loam soil, and on the silty clay loam the yield of conventionally fertilized barley was higher after deep than after shallow ploughing. In summary, limited evidence was found to support the use of on-land rather than in-furrow wheeling when ploughing is performed at favourable soil moisture and with tractor weights < 5 Mg. There is, however, reason to be wary of using heavy tractors (> 5 Mg), even under such conditions. With regard to ploughing depth in organic rotations dominated by cereals, the need to combat perennial weeds by deep ploughing weighs probably more heavily than any possible beneficial effect of shallow ploughing on stimulating nutrient turnover. (C) 2008 Elsevier B.V. All rights reserved.

Abstract

The effect of air pollution from the Petchenganickel industrial complex, northwestern part of the Kola Peninsula, on forest vegetation was studied by combining three dormant monitoring networks in Finland, Russia and Norway, comprising a total of 21 plots that were revisited in 2004. Chemical composition of precipitation was monitored during 2004–2005, and indicated continuing high deposition of heavy metals and SO2 in the border area. The cover of epiphytic lichens on the trunks of downy birch (Betula pubescens) and Scots pine (Pinus sylvestris) was severely affected by pollution, and there was also a consistent negative effect on the abundance and richness of lichens and bryophytes on the forest floor in a more limited area. The effects of pollution on crown condition and stand growth were weak or absent. This study is an important reference for evaluating the effects of the planned renovation of the smelter in Nikel.

To document

Abstract

With the objective of studying the effects of production systems on meat quality, 75 Norwegian White Sheep lambs were subjected to one of the following treatments: continuous grazing on a semi-natural lowland pasture until slaughtering (Control); continuous grazing followed by either stall-feeding on concentrate and grass silage or grazing ryegrass pasture for 44 or 24 days before slaughtering (Conc44, Conc24, Rye44, Rye24). Loin samples of M. longissimus dorsi including the subcutaneous fat were analysed for sensory attributes and fatty acid composition. Compared with the control group, a lower intensity of acid taste (P<0.05) and a lower content of C18:3n-6 fatty acids (P<0.001) were observed in the Conc44 group. The n-6/n-3 ratio was higher (P<0.001) in meat tested from the concentrate treatments compared to the ryegrass treatments. These findings indicate that the fattening of lambs on improved pastures or a concentrate-based diet prior to slaughter may alter meat characteristics.

Abstract

‘Elstar" is the latest-maturing commercial apple cultivar grown in Norway, with high fruit quality when properly managed. In May 2006, an experiment with four different crop loads [2, 4 ,6, or 8 flowers or fruitlets cm-2 trunk crosssectional area (TCSA), respectively] was established at two different stages [first bloom (FB), or 20-mm diameter fruitlets] and compared to unthinned control trees. Fruit growth was measured on individual fruit for each treatment throughout the season at weekly intervals. Thinning at FB gave a significantly lower final percentage fruit set than thinning to the same cropping level at the 20-mm fruitlet stage. However, fruit weights and soluble solids contents (SSC) were significantly higher, and the background fruit colour improved when trees were thinned at FB. The final number of fruit at harvest was less than the amount established at FB, or at the 20-mm fruitlet stage. There were significant differences between treatments in final fruit numbers per TCSA, which reflected the different crop loads. Fruit weights and SSC values were highest with the lowest crop load, and decreased with increasing crop loads.There was also a strong crop-load effect on the extent of return bloom per tree in the subsequent year. Trees thinned at FB had significantly more flower clusters than those thinned at the 20-mm fruitlet stage of. Untreated control trees had the lowest number of flower clusters. The amount of return bloom declined with increasing crop load. Second year crop loads and fruit weights were highest when trees were thinned at FB to two or four apples cm-2 TCSA in the previous year. Trees with the highest crop load had the lowest crop load in the following year. Fruit quality was generally high for all treatments.

Abstract

In Norway, it is planned to double the stationary use of bioenergy from all sources by up to 14 TWh before 2020, with much of this increase coming from forest resources, including residues like branches and tops (which are not much used today) being removed after tree harvest. This removal will reduce the supply of nutrients and organic matter to the forest soil, and may in the longer term increase the risk for future nutrient imbalance, reduced forest production, and changes in biodiversity and ground vegetation species composition. However, field experiments have found contrasting results (e.g. Johnson and Curtis 2001; Olsson et al. 1996). Soil effects of increased biomass removal will be closely related to soil organic matter (SOM) dynamics, litter quality, and turnover rates. The SOM pool is derived from a balance between above- and below-ground input of plant material and decomposition of both plants and SOM. Harvest intensity may affect the decomposition of existing SOM as well as the build-up of new SOM from litter and forest residues, by changing factors like soil temperature and moisture as well as amount and type of litter input. Changes in input of litter with different nutrient concentrations and decomposition patterns along with changes in SOM decomposition will affect the total storage of carbon, nitrogen and other vital nutrients in the soil. To quantify how different harvesting regimes lead to different C addition to soil, and to determine which factors have the greatest effect on decomposition of SOM under different environmental conditions, two Norway spruce forest systems will be investigated in the context of a research project starting in 2008/2009, one in eastern and one in western Norway, representing different climatic and landscape types. At each location, two treatment regimes will be tested: Conventional harvesting, with residues left on-site (CH) Aboveground whole-tree harvest, with branches, needles, and tops removed (WTH). Input of different forest residues will be quantified post harvest. Soil water at 30 cm soil depth will be analysed for nutrients and element fluxes will be estimated to provide information about nutrient leaching. Soil respiration will be measured, along with lab decomposition studies under different temperature and moisture regimes. Long term in situ decomposition studies will be carried out in the WTH plots using three different tree compartments (needles, coarse twigs, fine roots) decomposing in litter bags, in order to determine their limit value. The structure of the fungal community will be determined by soil core sampling and use of molecular techniques allowing qualitative and quantitative estimation. Understorey vegetation will be sampled to determine the biomass, and the frequency of all vascular plants, bryophytes and lichens will be estimated. After harvesting, replanting will be carried out. Seedling survival, causes of mortality and potential damage, growth, and needle nutrients will be monitored. Results from these studies will be used to identify key processes explaining trends observed in two series of ongoing long-term whole-tree thinning trials. We shall combine knowledge obtained using field experiments with results of modelling and data from the Norwegian Monitoring Programme for Forest Damage and National Forest Inventory. This will help us to predict and map the ecologically most suitable areas for increased harvesting of branches and tops on a regional scale based on current knowledge, and to identify uncertainties and additional knowledge needed to improve current predictions.