Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2011

To document

Abstract

The aim of this study was to determine the effect of whole-tree harvesting (WTH) on the growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as compared to conventional stem harvesting (CH) over 10 and 20 years. Compensatory (WTH+ CoF) and normal nitrogen-based (CH + F or WTH+ F) fertilisation were also studied. A series of 22 field experiments were established during 1977–1987, representing a range of site types and climatic conditions in Finland, Norway and Sweden. The treatments were performed at the time of establishment and were repeated after 10–13 years at 11 experimental sites. Seven experiments were followed for 25 years. Volume increment was on average significantly lower after WTH than after CH in both 10-year periods in the spruce stands. In the pine stands thinned only once, the WTH induced growth reduction was significant during the second 10-year period, indicating a long-term response. Volume increment of pine stands was 4 and 8% and that of spruce stands 5 and 13% lower on the WTH plots than on CH during the first and the second 10-year period, respectively. For the second 10- year period the relative volume increment of the whole-tree harvested plots tended to be negatively correlated with the amount of logging residue. Accordingly, the relative volume increment decreased more, the more logging residue was harvested, stressing the importance of developing methods for leaving the nutrient-rich needles on site. If nutrient (N, P, K) losses with the removed logging residues were compensated with fertiliser (WTH+ CoF), the volume increment was equal to that in the CH plots. Nitrogen (150–180 kg ha−1) or N+ P fertilisation increased tree growth in all experiments except in one very productive spruce stand. Pine stands fertilised only once had a normal positive growth response during the first 10-year period, on average 13m3 ha−1, followed by a negative response of 5m3 ha−1 during the second 10-year period. The fertilisation effect of WTH+ F and WTH+ CoF on basal area increment was both smaller and shorter than with CH+ F.

To document

Abstract

Background: Polychlorinated biphenyls (PCBs) are widespread in the environment, human food and breast milk. Seafood is known to contain nutrients beneficial for the normal development and function of the brain, but also contaminants such as PCBs which are neurotoxic. Exposure to non-coplanar PCBs during brain development can disrupt spontaneous behaviour in mice and lead to hyperactive behaviour. Humans are chronically exposed to the highest relative levels of organochlorines in early childhood during brain development, though usually at doses which do not give clinical symptoms of toxicity. This study aimed to elucidate the developmental and behavioural effects of 2,2',4,4',5,5' hexachlorobiphenyl (PCB153) in mice, mimicking human exposure during gestation and lactation. Methods: Environmentally relevant doses of PCB153 were added to the experimental diets. Feed concentrations were approximately 0.5, 6.5, and 1500 μg PCB153/kg feed, representing a realistic and a worst case scenario of frequent consumption of contaminated fish. The study also investigated the effects of maternal nutrition, i.e. a standard rodent diet versus a high inclusion of salmon. Mice pups were examined for physical- and reflex development, sensorimotor function and spontaneous behaviour from five days after birth until weaning. A selection of pups were followed until 16 weeks of age and tested for open field behaviour and the acoustic startle response (ASR) with prepulse inhibition (PPI). Blood thyroid hormones and liver enzymes, blood lipids and PCB153 content in fat were examined at 16 weeks. Statistical analyses modelled the three way interactions of diet, PCB exposure and litter size on behaviour, using generalized linear models (GLM) and linear mixed effect models (LME). The litter was used as a random variable. Non-parametric tests were used for pair wise comparisons of biochemical analyses. Results: Litter size consistently influenced pup development and behaviour. Few lasting PCB153 related changes were observed, but results indicated effects on synchronization of physical development. Perinatal PCB153 exposure appeared to reduce habituation and cause aggression in males, though not statistically significant. Conclusions: Litter size and maternal diet influenced physical development and function more than PCB153 in perinatally exposed mouse pups and supports the developmental importance of maternal care and the social environment.

Abstract

Background: Polychlorinated biphenyls (PCBs) are widespread in the environment, human food and breast milk. Seafood is known to contain nutrients beneficial for the normal development and function of the brain, but also contaminants such as PCBs which are neurotoxic. Exposure to non-coplanar PCBs during brain development can disrupt spontaneous behaviour in mice and lead to hyperactive behaviour. Humans are chronically exposed to the highest relative levels of organochlorines in early childhood during brain development, though usually at doses which do not give clinical symptoms of toxicity. This study aimed to elucidate the developmental and behavioural effects of 2,2’,4,4’,5,5’ hexachlorobiphenyl (PCB153) in mice, mimicking human exposure during gestation and lactation. Methods: Environmentally relevant doses of PCB153 were added to the experimental diets. Feed concentrations were approximately 0.5, 6.5, and 1500 μg PCB153/kg feed, representing a realistic and a worst case scenario of frequent consumption of contaminated fish. The study also investigated the effects of maternal nutrition, i.e. a standard rodent diet versus a high inclusion of salmon. Mice pups were examined for physical- and reflex development, sensorimotor function and spontaneous behaviour from five days after birth until weaning. A selection of pups were followed until 16 weeks of age and tested for open field behaviour and the acoustic startle response (ASR) with prepulse inhibition (PPI). Blood thyroid hormones and liver enzymes, blood lipids and PCB153 content in fat were examined at 16 weeks. Statistical analyses modelled the three way interactions of diet, PCB exposure and litter size on behaviour, using generalized linear models (GLM) and linear mixed effect models (LME). The litter was used as a random variable. Non-parametric tests were used for pair wise comparisons of biochemical analyses. Results: Litter size consistently influenced pup development and behaviour. Few lasting PCB153 related changes were observed, but results indicated effects on synchronization of physical development. Perinatal PCB153 exposure appeared to reduce habituation and cause aggression in males, though not statistically significant. Conclusions: Litter size and maternal diet influenced physical development and function more than PCB153 in perinatally exposed mouse pups and supports the developmental importance of maternal care and the social environment.

Abstract

Nutrient losses from agricultural catchments in Norway have been monitored since 1992 as part of the Norwegian Agricultural Environmental Monitoring Programme (JOVA). The catchments are at locations which are chosen to represent typical Norwegian agricultural systems such as the production of cereals, grass/livestock and vegetables. Losses are reported annually.

Abstract

Next to expansion of agricultural land and natural disasters, forest fires, illegal logging and bark beetles constitute the largest threat to the pine forests of Central America. Every year, 80-100.000 ha disappears due to the combined activity of the three factors. Natural disasters such as hurricanes and droughts, as well as poor forest management and wildfires lead to a stressed forest which in turn is advantageous for the increase in bark beetle population levels. Epidemic population levels of attacking beetles are able to kill large quantities of forests within weeks. Moreover, dead wood material acts as fuel for wildfires that have escaped control. We propose a monitoring and control regime which aims holistically and directly to the root causes of wildfires, bark beetle outbreaks and subsequent illegal logging in the pine forests of Central America. Monitoring activities focus on community participation and communication, while control of bark beetles is a combination of both long-term sustainable forest management procedures as well as direct and non-destructive control measures of the beetles to reduce their population levels to an endemic level.