Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2011

To document

Abstract

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

To document

Abstract

Population cycles of the winter moth (Operophtera brumata) in sub-arctic coastal birch forests show high spatiotemporal variation in amplitude. Peak larval densities range from levels causing little foliage damage to outbreaks causing spatially extensive defoliation. Moreover, outbreaks typically occur at or near the altitudinal treeline. It has been hypothesized that spatiotemporal variation in O. brumata cycle amplitude results from climate-induced variation in the degree of phenological matching between trophic levels, possibly between moth larvae and parasitoids. The likelihood of mismatching phenologies between larvae and parasitoids is expected to depend on how specialized parasitoids are, both as individual species and as a guild, to attacking specific larval developmental stages (i.e. instars). To investigate the larval instar-specificity of parasitoids, we studied the timing of parasitoid attacks relative to larval phenology. We employed an observational study design, with sequential sampling over the larval period, along an altitudinal gradient harbouring a pronounced treeline outbreak of O. brumata. Within the larval parasitoid guild, containing seven species groups, the timing of attack by different groups followed a successional sequence throughout the moth’s larval period and each group attacked 1–2 instars. Such phenological diversity within parasitoid guilds may lower the likelihood of climate-induced trophic mismatches between victim populations and many/all of their enemies. Parasitism rates declined with increasing altitude for most parasitoid groups and for the parasitoid guild as a whole. However, the observed spatiotemporal parasitism patterns provided no clear evidence for or against altitudinal mismatch between larval and parasitoid phenology.

To document

Abstract

Recent research on how the structure and physiological development of red raspberry (Rubus idaeus L.) plants are controlled by genotype and the climatic environment is reviewed. Some older work, specially on plant structure relations, is also included. Physiological differences between annual- and biennial-fruiting plant types are highlighted. One major difference is the different requirements for flower formation. While biennial-fruiting cultivars have an absolute low temperature (≤ approx. 15°C) requirement for floral initiation, annual-fruiting cultivars readily initiate floral primordia at temperatures as high as constant 30°C. Also, while biennial-fruiting cultivars are facultative short-day plants with a critical photoperiod of 15 h at intermediate temperatures, flowering is promoted by long photoperiods in at least some annual-fruiting cultivars. However, the essential difference that determines whether the shoot life-cycle becomes annual or biennial is that, in biennial-fruiting genotypes, floral initiation is linked to the induction of bud dormancy, whereas in annual-fruiting cultivars, floral initiation is followed by direct flower development. Although this is genetically determined, it is a plastic trait that is subject to modification by the environment. Thus, at low temperatures and short photoperiods, the majority of initiated buds do enter dormancy also in annual-fruiting cultivars, with tip-flowering as a result. Practical applications are discussed, and it is concluded that our present physiological knowledge-base provides excellent opportunities for manipulation of raspberry crops for out-of-season production and high yields. It also provides a firm platform for further exploration of the underlying molecular genetics of plant structures and response mechanisms.