Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Abstract
Six seed mixtures differing in number of species and their proportion of timothy (Phleum pratense L.) were tested during three/four production (ley) years in replicated field experiments at three climatically different sites in Norway; one a mountainous inland site at 61° N (Løken) and two in coastal environments, at 61° N (Fureneset) and 65° N (Tjøtta). There were significant differences in forage accumulation (FA) and digestible forage accumulation (DFA) between the three sites. There was a significant FA decline from the third to the fourth ley year for mixtures containing timothy, but not for mixtures without timothy. Estimated interannual FA- stability was higher for timothy-based seed mixtures than for mixtures without timothy at the inland site, but FA-stability was lower at the coastal sites. In the third-year herbage of timothy-based mixtures at the inland site consisted almost solely of timothy, whereas at the coastal sites meadow fescue (Festuca pratensis Huds.) and especially tall fescue (F. arundinacea Schreb.) dominated. In seed mixtures without timothy, cocksfoot (Dactylis glomerata L.) suppressed other species at the inland site, whereas at the coastal sites, tall fescue and ryegrasses (Lolium spp.) were the dominant species in the third-year herbage. Length of growing season and site-specific growing conditions were important drivers for the observed species changes. Timothy can thus be recommended for ley establishment at sites where the growing season is short (<4 months) and plant growth is intensive, but under conditions with a longer growing season it needs to be sown in mixtures with grass species that surpass the regrowth capacity of timothy.
Abstract
Climate change with fluctuations in weather patterns, environmental concerns, and increased costs of mineral fertilizers all demand adjustment of nitrogen (N) used for forage production. The aim of the study was to investigate the effects of splitting N application in spring on dry-matter (DM) yield, crude protein (CP) content and protein quality of timothy-meadow fescue leys. The trial was conducted during two years at three locations (Kvithamar and Særheim, Norway and Länghem, Sweden). Split N application with 60 kg N ha–1 at onset of grass growth in April and 50 kg N ha–1 in May resulted in the same DM yields and CP concentrations as a single application of 110 kg N ha–1 in April in Kvithamar the first year and Særheim both years. In Länghem both years and for Kvithamar in the second year, a late application two weeks before first cut gave less DM yield than the single full application in April. Split application did not affect the contents of nonprotein N or nitrate.
Abstract
Orchardgrass (Dactylis glomerata L.) is an important forage seed crop, but unlike other cool-season grasses, seed yields have not increased over time. Seed yield increases in orchardgrass may be possible with plant growth regulators (PGRs) such as trinexapac-ethyl (TE) and chlormequat chloride (CCC). Field trials were conducted at Hyslop Experimental Farm near Corvallis, Oregon, over three crop years (2017–2019) to examine the effects of spring nitrogen (N) and PGRs on seed production characteristics in orchardgrass. Spring N treatments included 0, 112, 157, and 202 kg N ha−1 and PGR applications were timed using the BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie) scale. Four PGR treatments included an untreated control, 210 g TE ha−1 at BBCH 32, 210 g TE ha−1 at BBCH 51, and 105 g TE ha−1 + 1500 g CCC ha−1 at BBCH 32. An interaction of spring N and PGR increased seed yields in 2 years, while spring N and PGR increased seed yield independently in the other year. The combination of TE and CCC PGRs did not increase seed yield over TE alone. Seed yield increases from spring N were due to an increase in seed number m−2, while increases in seed yield attributable to PGRs were the result of increased seed number m−2 and harvest index. This study suggests that the combination of 112 kg ha−1 spring N and 210 g ha−1 TE PGR is the best practice to maximize seed yield in orchardgrass.
Abstract
No abstract has been registered
Authors
Pia Heltoft ThomsenAbstract
No abstract has been registered
Authors
Ivana Korn Korg Ingrid Nesheim Marek Gielczewski Michael Strauch Dominika Krzeminska Anne Marie Eurie ForioAbstract
The OPTAIN case study teams met with stakeholder Multi-Actor Reference Groups (MARGs) for the third time to jointly discuss preliminary modelling results for specific Natural/Small Water Retention Measures (NSWRM) and obtain feedback. https://www.optain.eu/news/stakeholder-multi-actor-reference-groups-margs-met-3rd-time-jointly-discuss-preliminary
Authors
Arne Verstraeten Aldo Marchetto Andreas Schmitz Nicholas Clarke Anne Thimonier Char Hilgers Anne-Katrin Prescher Till Kirchner Karin Hansen Tamara Jakovljevic Carmen Iacoban Wim de Vries Bernd Ahrends Peter WaldnerAbstract
No abstract has been registered
Authors
Lars T. HavstadAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Zahra Bitarafan Wiktoria Kaczmarek-Derda Therese With Berge Carl Emil Øyri Inger Sundheim FløistadAbstract
BACKGROUND As regulations on pesticides become more stringent, it is likely that there will be interest in steam as an alternative approach for soil disinfestation. This study investigates the feasibility of utilizing a soil steaming device for thermal control of invasive plants. RESULTS Seeds of Echinochloa crus-galli, Impatiens glandulifera, Solidago canadensis, and rhizome fragments of Reynoutria × bohemica were examined for thermal sensitivity through two exposure methods: (1) steam treatment of propagative material in soil; (2) exposure of propagative material to warm soil just after heated by steam. Soil temperatures in the range of 60–99 °C and dwelling period of 3 min were tested. Increased soil temperature decreased seed germination/rhizome sprouting. The exposure method had a significant effect where higher temperatures were needed to reduce the seed germination/rhizome sprouting in method 2 explained by the effect of extra heat given in method 1. Using method 1, for E. crus-galli and S. canadensis, the maximum mean temperature of approximately 80 °C was enough to achieve the effective weed control level (90%). This was lower for I. glandulifera and higher for R. × bohemica. Using method 2, 90% control was achieved at 95 °C for S. canadensis; more than 115 °C for I. glandulifera; and more than 130 °C for E. crus-galli and R. × bohemica. CONCLUSION Our findings showed a promising mortality rate for weeds propagative materials through soil steaming. However, the species showed varying responses to heat and therefore steam regulation should be based on the differences in weeds' susceptibility to heat.