Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

Oidium neolycopersici, the cause of powdery mildew in tomato, was exposed to UV radiation from 250 to 400 nm for 1, 12, or 24 min. Radiation ≤ 280 nm strongly reduced conidial germination, hyphal expansion, penetration attempt and infection of O. neolycopersici. From 290 to 310 nm the effect depended on duration of exposure, while there was no effect ≥310 nm. There were no significant differences within the effective UV range (250–280 nm). Conidial germination on a water agar surface was b20% or around 40%, respectively, if samples were exposed for 1 min within the effective UV range followed by 24 h or 48 h incubation. Twelve or 24 min exposure reduced germination to close to nil. A similar trend occurred for germination of conidia on leaf disks on water agar in Petri dishes. The effective UV range significantly reduced all subsequent developmental stages of O. neolycopersici. There was no cytoplasmic mitochondrial streaming in conidia exposed to the effective UV range, indicating that there may be a direct effect via cell cycle arrest. There was no indication of reactive oxygen species involvement in UV mediated inhibition of O. neolycopersici. Optical properties of O. neolycopersici indicat- ed that the relative absorption of UV was high within the range of 250 to 320 nm, and very low within the range of 340 to 400 nm. Identification of UV wavelengths effective against O. neolycopersici provides a future basis for precise disease control.

To document

Abstract

Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide dataanalytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.

To document

Abstract

Following the ban of polybrominated diphenyl ether (PBDEs) flame retardants under well-documented toxicity issues, organophosphate such as tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-cloroethyl) phosphate (TCEP) were considered as potential substitutes. Although TBOEP and TCEP are consistently detected in the aquatic environment, there are few data about the possible toxicological effects of these compounds on aquatic organisms, including fish. In the present study, we have investigated the influence of TBOEP and TCEP on neuro- and interrenal steroidogenesis of juvenile Atlantic salmon (Salmo salar), after a seven-day exposure to four different concentrations (0 (control), 0.04, 0.2 and 1 mg/L) of each compound. TBOEP and TCEP were diluted in Milli-Q water. The expression of genes involved in ster- oidogenesis (StAR, cyp19a, cyp19b, cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-hsd), and 11β-hydroxylase (cyp11β)), were analyzed in the brain and head kidney using real-time PCR. Plasma 11-ketotestosterone (11-KT) analysis was performed using enzyme im- munoassay (EIA). Our results showed that TBOEP accumulated more rapidly than TCEP in fish muscle tissue. Surprisingly, TBOEP produced less pronounced effects than TCEP on neural and interrenal ster- oidogenic responses, despite the observed rapid uptake and bioaccumulation pattern. Specifically, TBOEP produced significant and consistent concentration-specific alterations on neural- and interrenal ster- oidogenesis. Plasma levels of 11-KT were not significantly altered by any of the exposures. The increased expression of steroidogenic genes demonstrated in the present study could produce time-specific al- terations in the production of glucocorticoids and steroid hormones that play integral roles in fish me- tabolism, stress responses and adaptation, sexual maturation, reproduction and migration with overt consequences on reproductive success and survival.