Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2017
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Hely Häggman Katja Karppinen Nga Nguyen Priyanka Trivedi Eivind Uleberg Inger Martinussen Laura Jaakola Päivi Vesala Roberts Joffe Liva Purpure Juha Väänänen Janne RemesAbstract
The industrial demand for wax is about 1.000.000 tons annually from which about only 3% is covered by natural waxes and 97% (mainly as paraffin) is produced from non-renewable (mainly fossil) sources. The total market value for this market is about 600-700 M€ per year. Compared to synthetic waxes which are fossil (oil) based and chemically processed materials, the natural waxes are produced by biogenesis, renewable and thus contribute to sustainable processes and reduced carbon emission. Also, natural waxes show well-balanced composition and perform in many applications much better than their synthetic counterparts. In Scandinavia we have very interesting candidates for domestic wax production i.e. wild berries such as lingonberry (Vaccinium vitis-idae L.) and bilberry (Vaccinium myrtillus L.) are abundantly found and important industrially utilized wild berries in arctic nature but we have also other interesting species like black crowberry (Empetrum nigrum) and bog bilberry (Vaccinium uliginosum). Wild berries are used increasingly by food industry due to their reported health and probiotic effects but much of the resource material is wasted as side stream after the food processing. In this project we want to develop methods for exploiting the raw material still present in the side stream and thus increasing its value. The broad expertise areas of the researchers involved covering biology, technology and marketing offer excellent background for the present project. The results achieved will be presented in the meeting. The project is funded by Interreg Nord.
Authors
Ivar Herfindal Unni Støbet Lande Erling Johan Solberg Christer Moe Rolandsen Ole Roer Hilde Karine WamAbstract
Co-existing species at the same trophic level often segregate with respect to diet, habitat use, or spatial distribution, reducing their direct competition for resources. However, temporal patterns in species-specific habitat use, for instance due to climatic variation, may affect the strength of interspecific interactions, and generate temporal variation in niche partitioning. We assessed temporal variation in habitat overlap between a wild ungulate, moose Alces alces, and two freeranging domestic ungulates, sheep Ovis aries and cattle Bos taurus, on a boreal forest range in southern Norway. We also calculated the distance between species’ realised niches, as well as the width of their realised niches to evaluate the extent of temporal niche partitioning under different diurnal weather conditions. Analyses of each habitat variable suggested complex relationships between species-specific habitat use, photoperiod, and weather, related to species-specific behaviour and activity patterns. We found shorter overall niche distance between moose and sheep, compared to moose and cattle, and shorter niche distances during day and night than during the twilight hours. The niche distance between moose and sheep was positively related to temperature during night, but negatively during day. Moreover, niche distance between moose and both sheep and cattle was negatively related to precipitation at daytime. Moose niche width was narrower in periods with short niche distance to sheep, while we did not find such pattern towards cattle. A lack of similar moose response to cattle could be attributed to lower niche overlap between moose and cattle. Our results suggest that temporal niche partitioning between moose and livestock breaks down under the weather conditions that are predicted to become more common as climate change, potentially increasing wildlife-livestock interactions in the future.
Authors
John Connolly Maria-Teresa Sebastià Laura Kirwan John Anthony Finn Rosa Llurba Matthias Suter Rosemary P. Collins Claudio Porqueddu Áslaug Helgadóttir Ole Hans Baadshaug Gilles Bélanger Alistair Black Caroline Brophy Jure Čop Sigridur Dalmannsdottir Delgado Ignacio Anjo Elgersma Michael Fothergill Bodil E. Frankow-Lindberg Ghesquiere An Piotr Golinski Philippe Grieu Gustavsson Anne-Maj Mats Höglind Olivier Huguenin-Elie Marit Jørgensen Zydre Kadziuliene Tor Lunnan Paivi Nykanen-Kurki Angela Ribas Friedhelm Taube Ulrich Thumm Alex De Vliegher Andreas LüscherAbstract
1. Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment. 2. At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, “method of nitrogen acquisition” and “pattern of temporal development”. 3. Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t DM ha−1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity. 4. Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%–75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture. 5. Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). 6. Synthesis and applications. Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions.
Lecture – What is IRIDA? And some results so far.
Johannes Deelstra, Robert Barneveld, Csilla Farkas
Abstract
No abstract has been registered
Authors
Olalla Díaz-Yáñez Blas Mola-Yudego José Ramón González-OlabarriaAbstract
Ungulate browsing results in important damages on the forests, affecting their structure, composition and development. In the present paper, we examine the occurrence of browsing damage in Norwegian forests, using data provided by the National Forest Inventory along several consecutive measurements (entailing the period 1995–2014). A portfolio of variables describing the stand, site and silvicultural treatments are analyzed using classification trees to retrieve combinations related to browsing damage. Our results indicate that the most vulnerable forest stands are young with densities below 1400 trees ha–1 and dominated by birch, pine or mixed species. In addition, stand diversity and previous treatments (e.g. thinnings) increase the damage occurrence and other variables, like stand size, could play a role on forest susceptibility to browsing occurrence although the latter is based on weaker evidence. The methods and results of our study can be applied to implement management measures aiming at reducing the browsing damages of forests.
Abstract
No abstract has been registered
Abstract
There has long been a claim that winter injuries of grass are a significant economic burden for golf courses in the Nordic countries. To confirm this claim, in 2015 the Norwegian Institute of Bioeconomy Research and the Norwegian Golf Federation, with support of the Scandinavian Turfgrass and Environment Research Foundation, conducted a net-based survey about winter injury in the five Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden). This comprehensive survey showed that total costs of repair of winter-injured greens and fairways together with lost revenue on golf courses in the Nordic countries can be at least €14 million. In a year with significant winter injuries, the average cost to repair the turf was between €3000 and €12,000 on 88% of the courses. The revenue loss after a winter with considerable injuries was less than €6000 at 50% of the courses, and 25% of the courses reported a loss between €6000 and €12,000 for these years. The causes of winter injuries varied depending on geography and grass species used on the greens. Biotic factors played a major role in the southern part of Scandinavia, and ice and water injuries were most devastating north of 60°N. This paper summarizes some of the answers from the respondents, including information about the dominating grass species on Nordic golf greens.