Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Roger Holten Frederik Bøe Marit Almvik Sheela Katuwal Marianne Stenrød Mats Larsbo Nicholas Jarvis Ole Martin EkloAbstract
Limited knowledge and experimental data exist on pesticide leaching through partially frozen soil. The objective of this study was to better understand the complex processes of freezing and thawing and the effects these processes have on water flow and pesticide transport through soil. To achieve this we conducted a soil column irrigation experiment to quantify the transport of a non-reactive tracer and the herbicide MCPA in partially frozen soil. In total 40 intact topsoil and subsoil columns from two agricultural fields with contrasting soil types (silt and loam) in South-East Norway were used in this experiment. MCPA and bromide were applied on top of all columns. Half the columns were then frozen at −3 °C while the other half of the columns were stored at +4 °C. Columns were then subjected to repeated irrigation events at a rate of 5 mm artificial rainwater for 5 h at each event. Each irrigation was followed by 14-day periods of freezing or refrigeration. Percolate was collected and analysed for MCPA and bromide. The results show that nearly 100% more MCPA leached from frozen than unfrozen topsoil columns of Hov silt and Kroer loam soils. Leaching patterns of bromide and MCPA were very similar in frozen columns with high concentrations and clear peaks early in the irrigation process, and with lower concentrations leaching at later stages. Hardly any MCPA leached from unfrozen topsoil columns (0.4–0.5% of applied amount) and concentrations were very low. Bromide showed a different flow pattern indicating a more uniform advective-dispersive transport process in the unfrozen columns with higher con- centrations leaching but without clear concentration peaks. This study documents that pesticides can be pre- ferentially transported through soil macropores at relatively high concentrations in partially frozen soil. These findings indicate, that monitoring programs should include sampling during snow melt or early spring in areas were soil frost is common as this period could imply exposure peaks in groundwater or surface water.
Authors
Arne BardalenAbstract
No abstract has been registered
Authors
Finn-Arne HaugenAbstract
No abstract has been registered
Authors
Finn-Arne HaugenAbstract
No abstract has been registered
Authors
Geir-Harald StrandAbstract
No abstract has been registered
Authors
Jørn Harald Hurum Victoria Sjøholt Engelschiøn Inghild Økland Janne Bratvold Christina Ekeheien Aubrey Jane Roberts Lene Liebe Delsett Bitten Bolvig Hansen Atle Mørk Hans Arne Nakrem Patrick Scott Druckenmiller Øyvind HammerAbstract
No abstract has been registered
Abstract
This article studies the implementation of the European Union (EU)’s Patients’ Rights Directive in Germany and Norway. The objective of the Directive was to allow EU member states to have a say in the regulatory work, ensure predictability and uniformity in the application of EU rules on cross-border care, and enhance a move towards EU harmonisation in this area. So far, the implementation processes in Norway and Germany have mixed results regarding the likelihood of achieving uniformity and harmonisation. Although the Directive has had convergent effects on certain areas of cross-border care, such as setting up National Contact Points and providing patients with the basic right to treatment abroad, implementation also shows divergent patterns. In both countries, adapting to EU rules has strengthened patients’ rights to choose freely among health-service providers in a wider European healthservice market. However, due to legal discretion and country-specific institutions within which the new rules are applied, divergent patterns prevail.
Abstract
The ericaceous shrub bilberry (Vaccinium myrtillus L.) is a keystone species of the Eurasian boreal forest. The most optimal light condition for this plant is partial shading. Shade from the forest canopy depends on the stand density, a forest attribute that can be manipulated by forest managers. Most previous studies of the relationship between bilberry abundance and forest density have not explored the potentially modifying impacts of factors like stand age, tree species composition, and the solar irradiation at the site, as determined by location and topography. Using data from the Norwegian National Forest Inventory, we developed a generalized linear model applicable to estimate local bilberry cover across a wide range of environmental conditions in Norway. The explanatory terms in the final model were stand density (basal area per ha), solar irradiation, stand age, percentages of deciduous, pine, and spruce trees, summer (June-August) mean temperature and precipitation sum, mean temperature in January, site index, and soil category, in addition to the two-way interactions between stand density and the following: solar irradiation, stand age, percentage of deciduous trees, and percentage of Norway spruce (Picea abies). The final model explained ca. 21% of the total variation in bilberry cover. We conclude that a stand density of c. 30 m2 ha−1 in general will create favourable conditions for bilberry. If the forest is younger than 80 years old, or dominated by Norway spruce or deciduous trees, the optimal stand density is reduced to around 20 m2 ha−1. In a forest dominated by Scots pine (Pinus sylvestris), basal areas up to 40 m2 ha−1 would be beneficial to bilberry abundance. Our results demonstrate the importance of considering interactions between stand density and other stand and site characteristics.
Authors
Marte Persdatter TangvikAbstract
Free-living plant-parasitic nematodes (PPN), including migratory endoparasites such as Pratylenchus spp., cause yield reduction in agriculture and horticulture world-wide. In Norway, nematicides are banned due to their adverse effect on human health and the environment. Thus, management of plant-parasitic nematodes rely on cultural practices, such as crop rotation. Free-living PPN tend to have broad host-ranges, which complicates the design of effective crop rotations. Information on the reproductive rate and damage potential of nematode species on different crops is of crucial importance when designing a successful crop rotation. Results from several experiments indicate that in order to reduce the numbers of free-living PPN, the sequence of crops is more important than the length of the rotation. The crop rotation should aim at protecting the most economically valuable crop. An oat (Avena sativa) field in Norway was heavily infested with Tylenchorhynchus dubius (1200 ind/250 ml soil) and a low population of Pratylenchus crenatus (10 ind/250 ml soil). The primary goal was to reduce T. dubius by growing turnip rape (Brassica rapa ssp. oleifera), with carrot as the following crop. T. dubius was reduced with 77-85% after turnip rape. In contrast, the population of P. crenatus increased by more than tenfold. The increased numbers of P. crenatus could be damaging to the carrot crop. This illustrates that crop rotation should be a long-term strategy, with carefully designed rotations to protect the most economically valuable crop (e.g. carrot). This also illustrates the challenges of designing a crop rotation that effectively reduces multiple nematode populations. In a started project, we will use photography with Unmanned Aerial Vehicles and transects to monitor nematode populations and damage in several fields throughout the growing season, and over several seasons. These fields will serve as naturally occurring experiments. We want to develop decision-making tools for nematode management in Norway.
Abstract
No abstract has been registered