Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2020
Forfattere
Marit AlmvikSammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Forfattere
Kari Skjånes Hanne Skomedal Giorgia Carnovale Volha Shapaval Achim Kohler Stig A. BorgvangSammendrag
No abstract has been registered
Forfattere
Cornelya KlutschSammendrag
No abstract has been registered
Forfattere
Heidi Udnes Aamot Erik Lysøe Shiori Koga Katherine Ann Gredvig Nielsen Ulrike Böcker Guro Brodal Ruth Dill-Macky Anne Kjersti Uhlen Ingerd Skow HofgaardSammendrag
The bread-making quality of wheat depends on the viscoelastic properties of the dough in which gluten proteins play an important role. The quality of gluten proteins is influenced by the genetics of the different wheat varieties and environmental factors. Occasionally, a near complete loss of gluten strength, measured as the maximum resistance towards stretching (Rmax), is observed in grain lots of Norwegian wheat. It is hypothesized that the loss of gluten quality is caused by degradation of gluten proteins by fungal proteases. To identify fungi associated with loss of gluten strength, samples from a selection of wheat grain lots with weak gluten (n = 10, Rmax < 0.3 N) and strong gluten (n = 10, Rmax ≥ 0.6 N) was analyzed for the abundance of fungal operational taxonomic units (OTUs) using DNA metabarcoding of the nuclear ribosomal Internal Transcribed Spacer (ITS) region ITS1. The DNA quantities for a selection of fungal pathogens of wheat, and the total amount of fungal DNA, were analyzed by quantitative PCR (qPCR). The mean level of total fungal DNA was higher in grain samples with weak gluten compared to grain samples with strong gluten. Heightened quantities of DNA from fungi within the Fusarium Head Blight (FHB) complex, i.e. Fusarium avenaceum, Fusarium graminearum, Microdochium majus, and Microdochium nivale, were observed in grain samples with weak gluten compared to those with strong gluten. Microdochium majus was the dominant fungus in the samples with weak gluten. Stepwise regression modeling based on different wheat quality parameters, qPCR data, and the 35 most common OTUs revealed a significant negative association between gluten strength and three OTUs, of which the OTU identified as M. majus was the most abundant. The same analysis also revealed a significant negative relationship between gluten strength and F. avenaceum detected by qPCR, although the DNA levels of this fungus were low compared to those of M. majus. In vitro growth rate studies of a selection of FHB species showed that all the tested isolates were able to grow with gluten as a sole nitrogen source. In addition, proteins secreted by these fungi in liquid cultures were able to hydrolyze gluten substrate proteins in zymograms, confirming their capacity to secrete gluten-degrading proteases. The identification of fungi with potential to influence gluten quality can enable the development of strategies to minimize future problems with gluten strength in food-grade wheat.
Sammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Forfattere
Stefano Puliti Marius Hauglin Johannes Breidenbach P. Montesano C.S.R. Neigh Johannes Rahlf Svein Solberg T. F. Klingenberg Rasmus AstrupSammendrag
Boreal forests constitute a large portion of the global forest area, yet they are undersampled through field surveys, and only a few remotely sensed data sources provide structural information wall-to-wall throughout the boreal domain. ArcticDEM is a collection of high-resolution (2 m) space-borne stereogrammetric digital surface models (DSM) covering the entire land area north of 60° of latitude. The free-availability of ArcticDEM data offers new possibilities for aboveground biomass mapping (AGB) across boreal forests, and thus it is necessary to evaluate the potential for these data to map AGB over alternative open-data sources (i.e., Sentinel-2). This study was performed over the entire land area of Norway north of 60° of latitude, and the Norwegian national forest inventory (NFI) was used as a source of field data composed of accurately geolocated field plots (n=7710) systematically distributed across the study area. Separate random forest models were fitted using NFI data, and corresponding remotely sensed data consisting of either: i) a canopy height model (ArcticCHM) obtained by subtracting a high-quality digital terrain model (DTM) from the ArcticDEM DSM height values, ii) Sentinel-2 (S2), or iii) a combination of the two (ArcticCHM+S2). Furthermore, we assessed the effect of the forest- and terrain-specific factors on the models’ predictive accuracy. The best model (,i.e., ArcticCHM+S2) explained nearly 60% of the variance of the training set, which translated in the largest accuracy in terms of root mean square error (RMSE=41.4 t ha−1 ). This result highlights the synergy between 3D and multispectral data in AGB modelling. Furthermore, this study showed that despite the importance of ArcticCHM variables, the S2 model performed slightly better than ArcticCHM model. This finding highlights some of the limitations of ArcticDEM, which, despite the unprecedented spatial resolution, is highly heterogeneous due to the blending of multiple acquisitions across different years and seasons. We found that both forest- and terrain-specific characteristics affected the uncertainty of the ArcticCHM+S2 model and concluded that the combined use of ArcticCHM and Sentinel-2 represents a viable solution for AGB mapping across boreal forests. The synergy between the two data sources allowed for a reduction of the saturation effects typical of multispectral data while ensuring the spatial consistency in the output predictions due to the removal of artifacts and data voids present in ArcticCHM data. While the main contribution of this study is to provide the first evidence of the best-case-scenario (i.e., availability of accurate terrain models) that ArcticDEM data can provide for large-scale AGB modelling, it remains critically important for other studies to investigate how ArcticDEM may be used in areas where no DTMs are available as is the case for large portions of the boreal zone.
Forfattere
Stefano Puliti Marius Hauglin Johannes Breidenbach Paul M. Montesano C.S.R. Neigh Johannes Rahlf Svein Solberg Torgeir Ferdinand Klingenberg Rasmus AstrupSammendrag
No abstract has been registered
Forfattere
Melissa Magerøy Samuel W. Wilkinson Torstein Tengs Hugh Cross Marit Almvik Pierre Petriacq Adam Vivian-Smith Tao Zhao Carl Gunnar Fossdal Paal KrokeneSammendrag
In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm.