Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

Denne rapporten gir resultater fra første år i prosjektet ‘ROBO-GOLF: Bedre gresskvalitet, redusert gjødselkostnad og mindre bruk av fossil energi ved bruk av robotklipper på fairway og semi-rough’ I arbeidspakke (WP) 1 ble forsøk med sammenlikning av robotklipper og manuell klipper (sylinder-klipper på fairway, 15 mm klippehøyde; rotorklipper på semi-rough, 35 mm klippehøyde) til ulike grasarter anlagt på NIBIO Landvik i 2020. Foreløpige resultater fra perioden 11.august - 30.oktober 2020 (etter at grasdekket var etablert) viste bedre helhetsinntrykk med robotklipping enn med manuell klipping på fairway, spesielt i engkvein (Agrostis capillaris) som ble mindre angrepet av mikrodochiumflekk. På semi-rough var derimot skuddtettheten mindre og bladbredden større, og engrapp (Poa pratensis) ble mer invadert av tunrapp og mer angrepet av rust ved robotklipping enn ved manuell klipping.

To document

Abstract

This paper explores and sheds light on the elements, complexity, and dynamics of sociocultural adaptation to innovation and climate change in European Urban Agriculture. We use a scoping-exploratory review to search and unveil elements of sociocultural adaptation (SCA) in the existing literature on European urban agriculture. We categorize these elements into three main categories. This categorization can inform and be further explored, operationalized, and developed in new case-study-based research and serve as a starting point to better understand social adaptation to innovation and climate change in urban contexts, and beyond. Key results draw attention to (a) socio-technical and socio-ecological innovations as critical to sociocultural adaptation to innovation and climate change (b) some elements of SCA identified through the scoping review seem more central than others for the adaption process (c) we are left with the question of whether we need to bridge social science with biology sciences, such as human behavioral biology and neurobiology to find the answer to deeper questions about SCA.

To document

Abstract

Loss of Arctic sea ice owing to climate change is predicted to reduce both genetic diversity and gene flow in ice-dependent species, with potentially negative consequences for their long-term viability. Here, we tested for the population-genetic impacts of reduced sea ice cover on the polar bear (Ursus maritimus) sampled across two decades (1995–2016) from the Svalbard Archipelago, Norway, an area that is affected by rapid sea ice loss in the Arctic Barents Sea. We analysed genetic variation at 22 microsatellite loci for 626 polar bears from four sampling areas within the archipelago. Our results revealed a 3–10% loss of genetic diversity across the study period, accompanied by a near 200% increase in genetic differentiation across regions. These effects may best be explained by a decrease in gene flow caused by habitat fragmentation owing to the loss of sea ice coverage, resulting in increased inbreeding of local polar bears within the focal sampling areas in the Svalbard Archipelago. This study illustrates the importance of genetic monitoring for developing adaptive management strategies for polar bears and other ice-dependent species.

To document

Abstract

Wildlife species living in proximity with humans often suffer from various anthropogenic factors. Here, we focus on the endangered Saimaa ringed seal (Pusa hispida saimensis), which lives in close connection with humans in Lake Saimaa, Finland. This unique endemic population has remained landlocked since the last glacial period, and it currently consists of only ~400 individuals. In this review, we summarize the current knowledge on the Saimaa ringed seal, identify the main risk factors and discuss the efficacy of conservation actions put in place to ensure its long-term survival. The main threats for this rare subspecies are bycatch mortality, habitat destruction and increasingly mild winters. Climate change, together with small population size and an extremely impoverished gene pool, forms a new severe threat. The main conservation actions and priorities for the Saimaa ringed seal are implementation of fishing closures, land-use planning, protected areas, and reduction of pup mortality. Novel innovations, such as provisioning of artificial nest structures, may become increasingly important in the future. Although the Saimaa ringed seal still faces the risk of extinction, the current positive trend in the number of seals shows that endangered wildlife populations can recover even in regions with considerable human inhabitation, when legislative protection is combined with intensive research, engagement of local inhabitants, and innovative conservation actions. Such multifaceted conservation approaches are needed in a world with a growing human population and a rapidly changing climate.