Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Thinning treatments along with the establishment of mixed forest stands have been put forward as possible adaptation strategies to cope with climate change, although the effectiveness of combining these two measures has scarcely been studied and may vary depending on stand conditions and the thinning regime employed. The aim of this study was to better understand the effect of commercial thinning and of the different growth behavior of two coexisting species on their inter- and intra-annual cumulative radial increment patterns. For this purpose, we studied radial increment in a Scots pine-Pyrenean oak (Pinus sylvestris L.-Quercus pyrenaica Willd.) Mediterranean mixed forest in north-west Spain over two climatically contrasting years (2016–2017). The data came from a thinning trial consisting of a randomized latin square design with a control and two commercial thinning treatments from below; one moderate and the other heavy, removing 25% and 50 % of initial basal area, respectively, of both species. The radial increment was analyzed based on bi-weekly readings from band dendrometers installed on 90 oak and pine trees. A non-linear mixed model based on double-Richards curve was fitted to explore the differences between thinning treatments and species response in the intra-annual cumulative radial increment patterns. Inter-annual basal area increments for each species at stand level were quantified by aggregating the tree estimates obtained from the model fitted in the first step. Tree and stand level growth were greater in Scots pine, which also showed a greater growth response to early spring droughts than the Pyrenean oak. Heavy thinning increased radial increment in trees of both species at the expense of decreased total stand basal area. At species level, basal area growth in Scots pine decreased through thinning, whereas for Pyrenean oak, the heavy thinning intensity resulted in the same basal area growth as the control. Thus, heavy thinning induced a trade-off between total stand growth and tree-level response to climatic conditions for Scots pine but with no loss in productivity in the case of the Pyrenean oak. Hence, heavy thinning may be an appropriate measure to attain productive stability of the oak coppice in the studied mixed forest as well as to adapt tree growth to future droughts associated with climate change.

Abstract

Normal log lengths in Norway are 3–6 m (NL), but occasionally there is a demand for short timber with a 2.5 m log length (ST). There are concerns that ST could reduce the forwarders' productivity. Six type stands were created based on harvester data. Different assortment distributions, conditions, and forwarders were simulated in each type stand. It was found that an additional ST assortment almost always decreased productivity (from –15.5 to +4%). Increased forwarding distance (m), more difficult driving conditions, and increased log concentration [m3·(100 m strip road)–1] decreased the productivity difference between sites with ST and NL and sites with only NL. Increased forwarder size increased the productivity difference between sites with ST and NL and sites with only NL. It is possible to load two stacks of ST on some forwarders. Such loading was more productive than loading one stack on longer forwarding distances, while the opposite was the case on short distances. However, loading two stacks of ST can lead to overloading.

To document

Abstract

Recent decades have seen increased temperatures and precipitation in the Nordic countries with long-term projections for reduced frost duration and depth. The consequence of these trends has been a gradual shift of delivery volumes to the frost-free season, requiring more agile management to exploit suitable weather conditions. Bearing capacity and trafficability are dependent on soil moisture state and in this context two satellite missions offer potenially useful information on soil moisture levels; NASA’s SMAP (Soil Moisture Active Passive) and ESA’s Sentinel-1. The goal of this pilot study was to quantify the performance of such satellite-based soil moisture variables for modeling forest road bearing capacity (e-module) during the frost-free season. The study was based on post-transport registrations of 103 forest road segments on the coastal and interior side of the Scandinavian mountain range. The analysis focused on roads of three types of surface deposits. Weekly SMAP soil moisture values better explained the variation in road e-module than soil water index (SWI) derived from Sentinel-1. Soil Water Index (SWI), however, reflected the weather conditions typical for operations on the respective surface deposit types. Regression analysis using (i) SMAP-based soil dryness index and (ii) its interaction with surface deposit types, together with (iii) the ratio between a combined SMAP_SWI dryness index and segment-specific depth to water (DTW) explained over 70% of the variation in road e-module. The results indicate a future potential to monitor road trafficability over large supply areas on a weekly level, given further refinement of study methods and variables for improved prediction.

To document

Abstract

Extractives from silver birch (Betula pendula) can play an important role in the future bioeconomy by delivering the feedstock, for instance, for antioxidative applications. It is, therefore, inevitable to gain knowledge of the distribution of extractive content and composition in the different tissues of the tree for estimating the potential volumes of valuable extractable compounds. This study examines the extractable compound distribution of different tree tissues such as outer and inner bark and wood, respectively, considering the original height of the stem and comparing the yields after Soxhlet and accelerated solvent extraction (ASE). Eleven parts of the model tree (seven stem discs and four branches) were separated into primary tissues and extracted with a ternary solvent system. The investigated extraction methods resulted in a comparable performance regarding yields and the composition of the extractives. The extractives were divided into single compounds such as betulin, lupeol, γ-sitosterol, and lupeone and substance groups such as carbohydrates, terpenes, aromatics, and other groups. The distribution of single substances and substance groups depends on the location and function of the examined tissues. Furthermore, the evidence for the correlation of a single substance’s location and original tree height is stronger for lupeol than for betulin. Primary betulin sources of the calculated betulin output are the outer bark of the stem and the branches. By using small branches, further potential for the extraction of betulin can be utilized. A model calculation of the betulin content in the current birch tree revealed a significant potential of 23 kg of betulin available as a valuable chemical resource after by-product utilization.

Abstract

Inthis study, we introduce Point2Tree, a modular and versatile framework that employs a three-tiered methodology, inclusive of semantic segmentation, instance segmentation, and hyperparameter optimization analysis, designed to process laser point clouds in forestry. The semantic segmentation stage is built upon the Pointnet++ architecture and is primarily tasked with categorizing each point in the point cloud into meaningful groups or ’segments’, specifically in this context, differentiating between diverse tree parts, i.e., vegetation, stems, and coarse woody debris. The category for the ground is also provided. Semantic segmentation achieved an F1-score of 0.92, showing a high level of accuracy in classifying forest elements. In the instance segmentation stage, we further refine this process by identifying each tree as a unique entity. This process, which uses a graph-based approach, yielded an F1-score of approximately 0.6, signifying reasonable performance in delineating individual trees. The third stage involves a hyperparameter optimization analysis, conducted through a Bayesian strategy, which led to performance improvement of the overall framework by around four percentage points. Point2Tree was tested on two datasets, one from a managed boreal coniferous forest in Våler, Norway, with 16 plots chosen to cover a range of forest conditions. The modular design of the framework allows it to handle diverse pointcloud densities and types of terrestrial laser scanning data.