Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

In order to determine the pollinizer success rates between twelve apple cultivars in 2021 and 2022, 671 apple embryos were collected from 19 different orchards in Ullensvang (southwestern Norway) and Svelvik (southeastern Norway). Genomic DNA was extracted from the collected embryos and, afterward, a genetic characterization with 15 polymorphic microsatellite markers was conducted. An identical set of markers was also used on all twelve mother cultivars, as well as on six crabapple pollinizers, which were found in the investigated orchards. The obtained molecular data enabled paternity analyses to be performed with the objective of assigning a male parent to each embryo. The paternity analyses identified pollen donors for all, except for 3% of the embryos. In most cases, it was possible to identify the most successful pollinizers for each cultivar, with ‘Aroma’ and ‘Discovery’ being the most efficient pollen donors overall. Tree abundance seems to be a major factor in pollinizer success, while semi-cross-compatible characteristics represent a hindrance. Only 7% of the analyzed embryos were determined to have been fertilized by pollinizers outside the orchard, confirming the significance of pollinizer proximity for efficient pollination.

To document

Abstract

Almost 95% of the area in Norway is wilderness and 38% of the land area is covered by woods. These areas are abundant in valuable renewable resources, including wild berries. In our neighbouring countries, Sweden and Finland, wild berries are already a big industry. At the same time, on the market the Norwegian wild berries are almost non-existent and berries are left unexploited. Lingonberry (Vaccinium vitis-idaea) is one of the most abundant and economically important wild berries in the Nordic countries. Nevertheless, lingonberry has a large untapped potential due to its unique health effects and potential for increased value creation. It is estimated that 111,500 t of lingonberry are produced in the Norwegian woods. Norway is a long and diverse country with a range of climatic conditions. Adaptations to different conditions can give differences in both yield and quality of wild berries. Yields vary enormously from year to year and among different locations. A steady supply, predictable volumes and high quality are vital for successful commercialization of wild berries. To increase the utilization of berries, there is a need for increased knowledge regarding availability and quality variation of the berries. In addition, the Norwegian market suffers from high labour costs and cannot compete in product price. Innovative solutions and new knowledge on quality aspects can open possibilities for value creation. Toward achieving this goal, we have created a project called “WildBerries”, the main objective of which is to produce research-based knowledge that will create the basis for increased commercial utilization of Norwegian wild berries.

Abstract

There is an increased interest in the hydroponic production of strawberries in protected cultivation systems, and it is, therefore, urgent to develop new, more sustainable growing media alternatives. This study investigated the physical properties of wood fiber produced from Norway spruce (Picea abies (L.) H. Karst.) and peat:wood fiber substrate blends as well as the performance of the wood fiber in comparison to the industry standards, i.e., peat and coconut coir in the cultivation of hydroponic strawberry. Tray plants of the June-bearing strawberry (Fragaria × ananassa Duch.) cultivar ‘Malling Centenary’ were transplanted into five different growing media: a peat (80%) and perlite (20%) mixture, stand-alone (100%) coconut coir and three stand-alone (100%) Norway spruce wood fiber substrates (including coarse textured fibers with compact and loose packing density and compacted fine-textured fibers). Ripe strawberries were harvested and registered throughout the production season. The overall marketable yield was comparable across all the tested growing media; however, after 4 weeks of harvest, both coarse wood fiber and fine wood fiber showed better fruiting performance than the peat-perlite mixture. A trend for earlier berry maturation was observed for all wood fiber-based substrates. Plant parameters recorded after the end of production showed that plant height, number of leaves, and biomass production were higher in coarse wood fiber than in the peat-perlite mixture. Moreover, plants grown in wood fiber-based substrates had less unripe berries and flowers not harvested in comparison to both the peat and coir treatments.

Abstract

Cultivation of strawberries in greenhouses and polytunnels is increasing, and new sustainable growing media are needed to replace peat and coconut coir. This study investigated the effect of wood fiber and compost as growing media on hydroponically cultivated strawberries. Two experiments were conducted, where the everbearing cultivar ‘Murano’ was grown in mixtures of wood fiber and compost (Experiment 1) and the seasonal flowering cultivar ‘Malling Centenary’ was grown in mixtures of wood fiber and peat (Experiment 2). Additionally, in Experiment 2, the effect of adding start fertilizer was assessed. The yield potential of ‘Murano’ plants was maintained in all substrates compared to the coconut coir control. However, a mixture of 75% wood fiber and 25% compost produced the highest yield, suggesting that mixtures of nutritious materials with wood fiber may improve plant performance. The chemical composition of the berries was not affected by the substrate composition; however, berries from plants grown in the best performing blend had a lower firmness than those grown in coconut coir. ‘Malling Centenary’ plants produced higher yields in substrates enriched with start fertilizer. Generally, the productivity of ‘Malling Centenary’ plants was maintained in blends containing up to 75% of wood fiber mixture even without start fertilizer.

Abstract

Temperature and humidity were measured in 28 vegetable stores and corelated to quality of stored vegetable through two storage seasons. The vegetables swede, carrot and celeriac were grown at one site within each of the four regions in Norway ROG, MID, INN and OSL, respectively. After harvesting, the vegetables were weighed and visually assessed for any injuries or diseases and stored in different stores within the same region as grown. Four bags dug down in four storage bins in each store. Temperature and humidity were logged in each bag as well as on the top of each bin and on wall of the storage. In general, we found significant differences in the storage quality between the different storages as well as between regions. Correlating data on quality with temperature data shows for carrot a tendency to an increase in the proportion of fresh roots and reduction in incidence of tip-rot by an increased average temperature during the first two weeks of storage. This corresponds to results from tested various wound healing treatments. An increase in accumulated temperature during the storage period showed a tendency to increase the emergence of tip-rot and reduce the proportion of fresh roots. For celeriac, the effect of temperature varied between years, possibly due to a large difference in quality in the two test years, and it was difficult to draw any conclusion. In swede, the results suggest that a decrease in temperature in the first two weeks of storage increased the risk of the symptom shown as black veins in the phloem. Nutrient status was found to be a possibly predisposing factor for reduced storage quality in celeriac. Balance of boron (B) to calcium (Ca) and zinc (Zn) were studied in two sites. Highest incidence of brown spots and lowest proportion of fresh roots following storage was found in celeriac with the lowest Ca/B ratio in leaves, lowest content of Zn in the leaves and roots and lowest soil pH.

Abstract

The fungus Neonectria ditissima causes Fruit Tree Canker on apple and pear. In the past years the disease has become a threat for Swedish and Northern European apple production since devastating outbreaks destroy large numbers of trees. To date, no complete genetic resistance to N. ditissima is known in apple but genotypes (scion cultivars and rootstocks) differ greatly in their level of partial resistance. Furthermore, the degree of susceptibility of a scion cultivar may be influenced by the rootstock it is grafted to. Thus, we aimed to improve our understanding of genetically determined differences in resistance among rootstocks and clarify cultivar/rootstock interactions with regards to canker resistance. For that, we evaluated differences in resistance to fruit tree canker in 24 rootstocks (including two M9 clones). We also evaluated differences in resistance of four most widely grown in Sweden scion cultivars grafted to four common rootstocks differing in vigour. The new knowledge will be useful for growers and breeders to minimize canker damages, prevent loss of the fruit-bearing surface in the orchards, save time and money for the growers.

To document

Abstract

Nutrient uptake and transport depend on the root system of a tree. Various apple rootstock genotypes may interact fruit tree nutrition. In 2017, two multi-location apple rootstock trials were established at 16 sites in 12 European countries. The evaluations are performed by members of the EUFRIN (European Fruit Research Institute Network) Apple & Pear Variety & Rootstock Testing Working Group. Following rootstocks are included in the tests: G.11, G.41, G.202 and G.935 (US), EM_01, EM_02, EM_03, EM_04, EM_05 and EM_06 (UK), 62-396-B10® (Russia), P 67 (Poland), NZ-A, NZ-B, NZ-C and NZ-D (New Zealand) and Cepiland-Pajam®2 as control. The effect of rootstocks on the mineral content of leaf and fruit was studied at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry in 2019-2020. The leaf and fruit mineral concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and leaf mineral content of copper (Cu), zinc (Zn), iron (Fe), manganese (Mn) and boron (B) were measured. Significant rootstock effect was established on leaf P, Mg, Zn, Mn, B, and fruit Ca and Mg content. Rootstocks EM_01 and G.41 were the most efficient in leaf mineral uptake, while G.935 had the lowest content of all leaf macro nutrients. Rootstocks EM_06 and P 67 were the most efficient in fruit mineral uptake, while EM_02 had the lowest content of three nutrients. Current research reveals differences among rootstocks and their capacity to absorb separate minerals and enables creation of rootstock specific nutrition management.